AMTA Paper Archive

 

Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)

 

Search AMTA Paper Archive
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Accuracy
Antenna test range validation
J. Lemanczyk (Technical University of Denmark),O. Breinbjerg (Technical University of Denmark), R. Torres (ESA-ESTEC-XEE), November 1991
Antenna specifications for space applications are very stringent in most cases requiring that antenna measurement facilities be validated before testing can proceed. One method by which this validation can be achieved is by means of antenna test range intercomparisons which entail the measurement of a suitable test antenna at several ranges wherein one range acts as a control laboratory. The problems of such an intercomparison manifest themselves in the availability of suitable validation antennas as well as a clear definition of test parameters and the standardization of comparison procedures to ensure accuracy, reliability and consistency. The several test range intercomparisons carried out by the Technical University of Denmark (TUD) under contract from the European Space Agency (ESA) provide the basis for the current effort under ESA contract to define a suitable validation antenna, design and acquire an antenna for 12 GHz operation as well as defining a Verification Test Plan.
Superresolution signal processing for RCS measurement analysis
B.W. Deats (Flam & Russell, Inc.),D. Farina (Flam & Russell, Inc.), November 1991
Superresolution (SR) processing techniques have been used for many years in direction finding applications. These techniques have proved valuable in extracting more information from a limited data set than conventional Fourier analysis would yield. SR techniques have recently proven to be an extremely powerful radar cross section (RCS) analysis tool. Typical resolution improvements of 2 to 30 times may be achieved over conventional Fourier-based range domain data in both the one-dimensional and two-dimensional image domains. Typical measurement scenarios which can most benefit from SP processing are presented. These include: VHF/UHF RCS measurements, measurement of resonant targets, and performing detailed scattering analysis on complex bodies. Measurement examples are presented illustrating the use of SR processing in a variety of test conditions. When the advantages of SR processing are combined with the accuracy of Fourier techniques, a new window is opened through which target scattering characteristics can be seen more clearly than ever.
Design your measurement system for optimum throughput
G. McCarter (Hewlett-Packard Company), November 1991
To achieve optimum measurement accuracy and range throughput in antenna and radar cross-section (RCS) measurement applications requires a careful and thorough design of the measurement system. Measurement accuracy requirements, test time objectives, system flexibility, and system costs must all be balanced to achieve an optimum system design. Considering these issues independently will result in unwanted and/or unexpected system performance tradeoffs. This paper examines these issues in some detail and suggests a system design approach which balances microwave performance and measurement speed with system cost.
Dynamic air-to-air imaging measurement system
R. Harris (METRATEK, Inc.),B. Freburger (METRATEK, Inc.), J. Hollis (The Northrop Corporation), R. Redman (METRATEK, Inc.), November 1992
METRATEK has completed a highly successful program to prove the feasibility of high-resolution, air-to-air diagnostic radar cross section imaging of large aircraft in flight. Experience with the system has proven that large aircraft can indeed be imaged in flight with the same quality and calibration accuracy that can be achieved with indoor and outdoor ranges. This paper addresses the results of those measurements and the Model 100 AIRSAR radar and processing system that were used on this program.
An Implementation of the three cable method
O.M. Caldwell (Scientific-Atlanta Inc.), November 1992
The three cable method for removing the amplitude and phase variations of microwave cables due to temperature change and movement can offer a substantial improvement in antenna measurement accuracy. Implementation details of the method are provided for a planar near-field range. Items specifically addressed are range configuration, hardware requirements, data collection methodology, identification and assessment of error sources, and data reduction requirements.
Measurements for the verification of antenna temperature calculations for reflector antennas
K.M. Lambert (Analex Corporation),R.C. Rudduck (Ohio State University), November 1992
One antenna characteristic that is difficult to predict accurately is the antenna temperature. There are two basic reasons this is true. First, the effect of the full volumetric radiation pattern of the antenna must be taken into account. Secondly, the antenna temperature calculation requires knowledge of the noise power incident on the antenna, from the environment in which it is operating. This paper describes a measurement program which was undertaken to establish the accuracy of a model which is being used to predict antenna temperature for earth based reflector antennas. The measurements were conducted at 11 GHz, using an 8-foot diameter Cassegrain reflector antenna in an outdoor environment. The measurements are compared to predictions generated by The Ohio State University Reflector Antenna Code. Use of the reflector code allows the full volumetric pattern of the antenna, including all sidelobes, backlobes and cross-polarized response, to be included in the calculation. Additionally, the contribution to the antenna temperature from the various regions of the pattern can be calculated separately and analyzed.
A Hologram type of compact antenna test range
J. Tuovinen (Helsinki University of Technology),A. Raisanen (Helsinki University of Technology), A. Vasara (Helsinki University of Technology), November 1992
The applications of conventional reflector type compact antenna test ranges (CATR), becomes increasingly difficult above 100 GHz. The main problems are the tight surface accuracy requirements for the reflector, and therefore the high manufacturing costs. These problems can be overcome by the use of a new hologram type of compact range, in which a planar hologram structure is used as a collimating element. This new idea is described, and its performance is studied with theoretical analyses and measurements at 110 GHz.
Characterizing compact range performance for space communication antenna applications
S. Brumley (Boeing Defense and Space Group), November 1992
This paper addresses measurement requirements for space communication antennas and identifies antenna parameters most influenced by indoor compact range quiet zone quality. These parameters include sidelobe level, beam pointing, and gain. The compact range mechanisms limiting measurement accuracy are identified and discussed. Proven methods for characterizing quiet zone performance are described and demonstrated through illustration and example. Analysis is presented which related quiet zone quality characteristics to antenna measurement accuracy. The paper summarizes typical measurement results and error levels achievable for modern compact range systems. Methods for improving compact range performance for satellite antenna testing are also presented.
Stereo optical tracker for compact range models
W.D. Sherman (Boeing Defense & Space Group),J.M. Saint Clair (Boeing Defense & Space Group), M.D. Voth (Boeing Defense & Space Group), P.F. Sjoholm (Boeing Defense & Space Group), T.L. Houk (Boeing Defense & Space Group), November 1992
A Precision Optical Measurement System (POMS) has been designed, constructed and tested for tracking the position (x,y,z) and orientation (roll, pitch, yaw) of models in Boeing's 9-77 Compact Radar Range. A stereo triangulation technique is implemented using two remote sensor units separated by a known baseline. Each unit measures pointing angles (azimuth and elevation) to optical targets on a model. Four different reference systems are used for calibration and alignment of the system's components and two platforms. Pointing angle data and calibration corrections are processed at high rates to give near real-time feedback to the mechanical positioning system of the model. The positional accuracy of the system is (plus minus) .010 inches at a distance of 85 feet while using low RCS reflective tape targets. The precision measurement capabilities and applications of the system are discussed.
Design considerations for a planar near-field scanner
J.H. Pape (Scientific-Atlanta, Inc.),A.L. Wilcox (Scientific-Atlanta, Inc.), J.D. Huff (Scientific-Atlanta, Inc.), November 1992
Planar Near-Field scanning is becoming the method of choice for testing many types of antennas. These antennas include planar phased arrays, space deployable satellite antennas and other antennas either too large to move during the test or otherwise sensitive to the gravity vector. The planar scanner is a major component of the measurement system and must provide an accurate and stable platform for moving the RF probe across the test antenna's aperture. This paper describes basic design requirements for a planar near-field scanner. Based on recent development activity at Scientific-Atlanta several design considerations are presented. Scanner parameters discussed include basic scanner concepts and geometry, scanner accuracy and stability, RF system including cabling and accuracy, load carrying requirements of the RF probe carriage, position and readout systems and drive and control systems. A scanner will be presented which incorporates many of the design features discussed.
Speed and accuracy for near-field scanning measurements
D.W. Hess (Scientific-Atlanta, Inc.),D.R. Morehead (Scientific-Atlanta, Inc.), S.J. Manning (Scientific-Atlanta, Inc.), November 1992
Rapid data acquisition is crucial in making comprehensive near-field scanning tests of electronically-steered phased array antennas. Multiplexed data sets can now be acquired very rapidly with high speed automatic data acquisition. To obtain high speed without giving up accuracy in probe position a feature termed subinterval triggering has been devised. To obtain simultaneously reliable thermal drift or tie scan data a feature termed block tie scans has been devised. This paper describes these two features that yield speed and accuracy in planar near-field scanning measurements.
The Commissioning of a fast planar near-field facility
K.S. Farhat (ERA Technology Ltd.),N Williams (DRA (Maritime Division)) E H England (DRA (Maritime Division)), November 1992
Some of the novel mechanical and electronic subsystems features on a recently installed high specification planar near-field scanner are described together with a discussion of the problems encountered during the commissioning period. The test facility incorporates a number of novel design concepts both in terms of its instrumentation, control and processing subsystems. Features of the facility are the speed of data acquisition and the accuracy of the acquired near-field data. Scan speeds of up to 0.8 m/s and positional accuracies of 30 microns in the Z-axis have been achieved, and the near-field data is acquired, displayed and measured on the fly, hence allowing a typical 3m x 3m scan to be executed and the measured near-field results to be displayed and processed within a period of thirty minutes.
Contrast of VHF RCS measurement challenges indoor/outdoor, A
D. Craig,J. Matis, November 1993
This paper contrasts indoor and outdoor implementation of efforts during upgrades of VHR RCS measurement capabilities. Sites studied are two McDonnell Douglas Technologies Incorporated, Range Measurements Services facilities. Indoor. Radar Measurement Center (San Diego, CA) is a large compact range. Equipment-Harris Corporation Model 1630 Collimator System, Scientific Atlanta Model 2090 radar. Outdoor. Microwave test facility (Victorville, CA), large ground plane facility. Equipment-Steerable dipole feed dish, System Planning Corp, Mark III radar.
Remote thickness sensor
W.S. Arceneaux, November 1993
Applications that require tight tolerances on dielectric thickness control need accurate sensors. A technique has been developed that will allow for the measurement of thickness without requiring surface contact. High resolution radar imaging, commonly used in RCS measurements , is now being used to measure thickness. Electromagnetic fields reflected from the front and rear surface are detected and the time response delta is converted into thickness. A major advantage of this method is that it is not affected by varying sensor offset height.
Satellite and satellite antenna testing with high speed electronics
D.W. Hess,C.B. Brechin, November 1993
This presentation offers some examples of performance in accomplishing high volume testing under the rigorous technical constraints imposed by the satellite industry. As an example of a high speed system, the Scientific-Atlanta Model 2095 will be used to illustrate the capability offered by today's technology. This system has found applicatio0n in the facilities of five satellite manufacturers constructed within the past three years and is proven by its demonstrated application in satellite programs.
Analytic spherical near field to near/far field transformation, An
T.K. Sarkar,A. Taaghol, P. Petre, R.F. Harrington, November 1993
An efficient and accurate spherical near field to far field transformation without probe correction is presented. The indices m of the Legendre polynomials is summed up analytically, thereby reducing the computation time. Computations with both synthetic and experimental data illustrate the accuracy of this technique.
Measurement speed and accuracy in switched signal measurements
J. Swanstrom,R. Shoulders, November 1993
The interdependence of accuracy and speed should be considered when analyzing measurement requirements. Tradeoffs can be made to optimize the measurement when accuracy is of primary importance, or where speed is critical. Several different measurement modes of the HP 8530A Microwave Receiver are presented, each with different measurement speed and accuracy tradeoffs. Examples are given that illustrate which acquisition modes would be appropriate to optimize the acquisition speed and accuracy in a variety of applications
Polarization grids for applications in compact antenna test ranges
M.A.J. van de Griendt,V.J. Vokurka, November 1993
In polarimetric RCS measurements, the cross-polarization levels which are required in the test zone, correspond closely to those which are realizable with most Compact Antenna Test Ranges (CATR). On the other hand, such a performance may not satisfy the accuracy requirements in cross-polarization measurements of high performance microwave antennas. These applications include spacecraft antennas, ground stations for satellite communications or microwave antennas for terrestrial applications, where two polarizations are used simultaneously.
Validation measurements of reflector antenna strut lobes
R.C. Rudduck,J.Y. Wu, T-H. Lee, November 1993
The feed support struts often cause noticeable strut lobes in the patterns of reflector antennas. For example, strut lobes are apparent in the measured and calculated patterns presented in Ref. [1] for the 8-foot diameter reflector with a prime focus feed. As pointed out in [1], the calculated strut lobes are higher than the measured ones. The reason for the difference is secondary scattering by the oppositely located strut, which was not modeled in the calculated pattern in [1]. Detailed examination showed a difference of about 2 1/2 dB caused by the secondary scattering for this reflector antenna design. The purpose of this paper is to present measured and calculated patterns which explicitly demonstrate the quantitative effect of the secondary strut scattering. This effort is shown by comparing the measured strut lobe levels with the oppositely located strut removed, i.e., by using 3 struts instead of 4 struts. Calculated patterns are also given in which the secondary scattering is modeled.
GHz compact range for scale model RCS measurements, A
M.J. Coulombe,J. Waldman, R. Giles, T. Ferdinand, T. Horgan, November 1993
A 585 GHz compact range has been developed for obtaining full scale RCS measurements on scale model targets. The transceiver consists of two CW submillimeter-wave gas lasers along with two colled-InSb heterodyne mixers. Coherent detection has been implemented to maximize sensitivity and allow for a vector measurement capability. In addition, the target can be rapidly translated in range to generate a doppler modulation which is used to reject background signals during low-RCS measurements. Although most scaling has evolved to develop non-metallic materials with scaled dielectric properties as well as validation and test program, RCS measurements are made on scaled simple and complex shapes and compared with full-scale measurements and computer predictions. A description of the 585 GHz compact range along with measurement examples are presented in this paper.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  • Member News

    Meet your AMTA 2021 Board of Directors

    AMTA 2020 Proceedings are Available for Download (for AMTA Members Only)

    AMTA 2020 Papers are Now Available Online in the AMTA Paper Archive

    In Remembrance: Dr. Eric Walton

    For those who did not attend this year's symposium, just a reminder to renew your membership before the end of this year

    (Helpful HINT) Don't recall your login credentials or AMTA number? Just click the Reset Password link on any page an follow the instructions

  • AMTA News

    AMTA Announces 2020 Best Papers - CLICK HERE

    SUBMIT Your 2021 Abstract Now - DEADLINE APRIL 23

  • Event News

    Computational Modeling of Range Errors Videos & Handouts Now Available
    Hosted by Raytheon Technologies - CLICK HERE

    Visit AMTA 2021 Website for the Symposium on October 24-29, 2021.

    Beware Event & Hotel Phishing Schemes - CLICK HERE