AMTA Paper Archive

 

Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)

 

Search AMTA Paper Archive
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Accuracy
Near-field bistatic RCS measurement at BDM
R. Rogers (The BDM Corporation),E. Farr (The BDM Corporation), November 1987
The techniques of near-field antenna pattern measurement can be extended to near-field RCS measurement. The motivation for doing so is precisely the same as that for near-field antenna measurements; i.e., the convenience of an indoor antenna range, and an improvement in accuracy. Although the near-field measurement problem is solvable in principle in a manner analogous to the near-field antenna problem, it requires a significantly larger amount of time to take the necessary data, and to subsequently process the data to obtain useful quantities. BDM is currently involved in an on-going program to evaluate the feasibility of near-field bistatic RCS measurements. At the time of this writing, a complete set of mathematics has been formulated to handle the probe correction and data processing. The hardware has been built, software development is near completion, and the analysis of canonical scattering objects has been completed. Experimental data soon to be taken for these objects will be presented. It is hoped that the technique will prove to be a practical approach to RCS measurements.
Antenna calibrations using pulsed-CW measurements and the planar near-field method
A. Repjar (National Bureau of Standards),D. Kremer (National Bureau of Standards), November 1987
For over a decade the National Bureau of Standards has utilized the Planar Near-field Method to accurately determine antenna gain, polarization and antenna patterns. Measurements of near-field amplitudes and phases over a planar surface are routinely obtained and processed to calculate these parameters. The measurement system includes using a cw source connected to an accessible antenna port and a two channel receiver to obtain both amplitude and phase of the measurement signal with respect to a fixed reference signal. Many radar systems operate in a pulsed-cw mode and it is very difficult if not impossible to inject a cw signal at a desired antenna port in order to calibrate the antenna. As a result it is highly desirable to obtain accurate near-field amplitude and phase data for an antenna in the pulsed-cw mode so that the antenna far-field parameters can be determined. Whether operating in the cw or pulsed-cw modes, one must be concerned with calibrating the measurement system by determining its linearity and phase measurement accuracy over a wide dynamic range. Tests were recently conducted at NBS for these purposes using a precision rotary vane attenuator and calibrated phase shifter. Such tests would apply not only to measurement systems for determining antenna parameters but also to systems for radar cross section (RCS) measurements. The measurement setup will be discussed and results will be presented.
A Low Cost Spherical Near-Field Range Facility
J.R. Jones (Scientific-Atlanta, Inc.),C.E. Green (Scientific-Atlanta, Inc.), D.W. Hess (Scientific-Atlanta, Inc.), K.H. Teegardin (Scientific-Atlanta, Inc.), November 1987
In any type of electromagnetic measurements, the ideas of "precision and accuracy" and "low cost" tend to be mutually exclusive. At Scientific-Atlanta, for instance, production testing of antenna products is conducted in low cost miniature "anechoic chambers" which are fabricated in-house. These "chambers" are actually medium-sized to large (64-200 cubic feet) rectangular boxes with absorber attached to their walls. They are usually equipped with single axis positioners at one or both ends, and their usefulness is limited to the measurement of axial ratio on low gain small antennas.
Laser corrected field probe measurements of large compact ranges
J.W. Jones (Harris Corporation), November 1987
As the operating frequencies of compact range antennas increase, the accuracy of the field probes used to characterize their performance must also increase. Obtaining the required accuracy through mechanical design becomes more and more difficult as the size of the area to be probed increases. This paper describes the use of a laser measurement system to sense the probe's mechanical displacements thereby allowing corrections of compact range measurement. The relatively simple laser alignment system is well-suited for compact range probing in which accuracy is much more critical in the Z direction than the X-Y direction.
Optimized collimators-theoretical performance limits
B. Schluper (March Microwave Systems B.V.),J. Damme (March Microwave Systems B.V.), V.J. Vokurka (March Microwave Systems B.V.), November 1987
Over the last five years a considerable attention has been paid to further developments of Compact Antenna Test Ranges for both antenna and RCS measurements. For many applications, these devices proved to be more attractive than outdoor ranges or near-field/far-field transformation techniques. On the other hand, accurate operation at very low or very high frequencies can cause considerable difficulties. It is the aim of this paper to describe the theoretical limitation of collimating devices, in particular for low frequencies. For this purpose, an idealized collimator will be defined. Using the spectral components analysis a comparison of achievable accuracy will be made between collimators and outdoor ranges. Theoretical limits in the accuracy for RCS measurements will be computed for all applicable frequencies. Finally, a comparison will be made between the experiments on a dual-reflector Compact Antenna Test Range and theoretically achievable limits. Representative targets, like cylinders and rectangular plates have been used for experimental investigation. These data will also be presented.
ISAR image quality analysis
A. Jain (Hughes Aircraft Company),I.R. Patel (Hughes Aircraft Company), November 1988
In practical ISAR applications the quality of the image obtained depends upon the distortions in the wavefront illuminating the target, effects introduced by the radar-target path, the accuracy of the angle and frequency steps used in obtaining the data, vibration, and multiple reflections from neighboring objects. Results of analysis, simulation and data obtained in an RCS compact range are presented to quantify the relationships of the image degradation introduced by these effects.
Transfer efficiency of the compact range
R.W. Kreutel (Scientific-Atlanta, Inc.), November 1988
Over the years formulations have been developed which provide an implicit measure of transfer efficiency of the compact range. Reasonable accuracy has been demonstrated for both antenna and RCS measurement applications. In general, however, these formulations require specific design details pertaining to the collimating reflector. In this note a more general formulation is examined in which efficiency is explicitly expressed in terms familiar to antenna engineers and which do not directly involve reflector parameters. Applications of this formulation are presented.
Time gating of antenna measurements II
D.W. Hess (Scientific-Atlanta, Inc.),V. Farr (Scientific-Atlanta, Inc.), November 1988
Currently many new compact range facilities are being constructed for making antenna pattern measurements indoors. Limited suppression of stray signals ~ due to range layout, confined surroundings and residual absorbing material reflectivity ~ represents a limitation on the accuracy of the measurements made in these facilities. Time-gating of the compact range signal appears to be a very attractive technique to reduce unwanted reflections. The authors have carried out an experimental investigation of time gating in a compact range. It is demonstrated that time-gating can improve the uniformity of the aperture field by removing the feed backlobe radiation; and, it is demonstrated that time-gating can remove the effects on a pattern of certain room reflections and of feed backlobes. When compared to conventional methods of reducing reflections based on placement of absorber, time gating appears equivalent. It does not appear however that time gating improves the conventional methods, except for measuring wide beamwidth antennas.
Error analysis in RCS imaging
H.F. Schluper (March Microwave Systems, B.V.), November 1988
In the last few years, the interest in Radar Cross Section (RCS) measurements has increased rapidly. The development of high-performance Compact Ranges (CR) has made possible measurements on large targets down to very low RCS levels (below -70 dBsm). RCS imaging is a powerful tool to determine the location of scattering sources on a target. The response of the target is measured as a function of the frequency and aspect angle. A two-dimensional Fourier transform then gives the reflection density as a function of down-range and cross-range. If the response is measured vs. azimuth and elevation, even a complete 3-D image is possible. For high-resolution imaging (large bandwidth, wide aspect-angle span) a direct 2-dimensional Fourier transform gives rise to errors caused by the movement of the scatterers during the measurement. These errors can be corrected by applying a coordinate transformation to the measured data, prior to the Fourier transforms. This so called focused imaging allows further manipulation of measured data. However, the measurement accuracy can be a limiting factor in application of these techniques. It will be shown that the Compact Range performance as well as positioning accuracy can cause serious errors in high-resolution imaging and thus in interpretation of processed data.
Applications of autoregressive spectral analysis to high resolution time domain RCS transformations
E. Walton (The Ohio State University ElectroScience Laboratory), November 1988
Modern analysis techniques of radar scattering data or radar cross section (RCS) data often include transformation to the time domain for the purpose of understanding the specific scattering mechanisms involved or to isolate or identify specific scattering points. The classic technique is to transform from the frequency domain to the time domain using an inverse (Fast) Fourier Transform (IFFT). Often, however, the scattering centers are too close together to resolve or the requirement for accuracy in the measurement of the differential time delay is too high given the IFFT inverse bandwidth. This paper presents a technique for determining the time domain response of a radar target by processing the data using modern autoregressive (AR) spectral analysis. In this technique, the scattering from a radar target in the high frequency regime is shown to be autoregressive. This paper will show examples using the maximum entropy method (MEM) of Burg.
The Panelized approach to compact range construction
J. Cantrell (Harris Corporation), November 1988
The development of the Harris 1640 compact range required significant technical advances in developing a method of constructing a 70 foot reflector to a 0.005 inch RMS operational surface accuracy. A panelized approach is believed to be the only practical way to achieve this level of accuracy. Four technology areas had to be developed, adapted to this use, or have their current limits extended. A method was required for reducing the RF shaping data to individual panel contours. The reflector has no axis of symmetry thus each panel has a unique contour and the description of each contour requires complex mathematical interpolation. A new fabrication technique was needed to produce 0.002 inch RMS panels. Positioning and initially aligning the panels would require the adaptation of multiple theodolite techniques. The final setting of the panels would then require the use of a photogrammetric measurement system, the most accurate method available.
A Planar near-field range positioner
J.H. Bearden (Georgia Tech Research Institute),A.D. Dugenske (Georgia Tech Research Institute), November 1988
The Systems and Techniques Laboratory of the Georgia Tech Research Institute is producing a PC-controlled near-field planar scan system which will allow phase measurements more accurate than one degree at 10 GHz in a 10 foot by 12 foot plane. This high degree of accuracy will be accomplished with microstep motors, absolute linear encoders, and a helium neon laser compensator. The probe positioning system consists of a tower traveling across a set of linear rails. A probe moves vertically on the tower, allowing operator pre-described measurements to be taken. The system is designed to accept data as the probe moves vertically, then indexed horizontally for complete plane coverage.
Calibrating antenna standards using CW and pulsed-CW measurements and the planar near-field method
D. Kremer (National Bureau of Standards),A. Repjar (National Bureau of Standards), November 1988
For over a decade the National Bureau of Standards (NBS) has used the planar near-field method to accurately determine the gain, polarization and patterns of antennas either transmitting or receiving cw signals. Some of these calibrated antennas have also been measured at other facilities to determine and/or verify the accuracies obtainable with their ranges. The facilities involved have included near-field ranges, far-field ranges, and compact ranges. Recently, NBS has calibrated an antenna to be used to evaluate both a near-field range and a compact range. These ranges are to be used to measure an electronically-steerable antenna which transmits only pulsed-cw signals. The antenna calibrated by NBS was chosen to be similar in physical size and frequency of operation to the array and was also calibrated with the antenna transmitting pulsed-cw. This calibration included determining the effects of using different power levels at the mixer, the accuracy of the receiver in making the amplitude and phase measurements, and the effective dynamic range of the receiver. Comparisons were made with calibration results obtained for the antenna transmitting cw and for the antenna receiving cw. The parameters compared include gain, sidelobe and cross polarization levels. The measurements are described and some results are presented.
Methodology to project antenna measurement accuracy
R.B. Dybdal (The Aerospace Corporation), November 1989
Antenna measurement accuracy is often not addressed in a rigorous manner. A methodology for projecting antenna measurement accuracy is described together with some of the error components that limit measurement accuracy. Antenna measurement accuracy is approached through an error budget projection, which requires the first and second order statistics of the individual error sources. Typical error sources are described along with methods of obtaining the statistics required for the error budget.
Post processing corrections to indoor RCS VS aspect measurements
L. Pellett (Lockheed Aeronautical Systems Corporation), November 1989
This paper describes two signal processing techniques that have been used to overcome specific problems in a Lockheed Aeronautical Systems Corporation (LASC) indoor compact RCS measurement range. Both techniques are post processing techniques used to enhance the accuracy of RCS vs. Aspect measurements. These two techniques can speed up measurement time, increase measurement accuracy, and increase target sizes on a compact range.
Compact range reflector surface accuracy and quiet zone quality
L. Woodruff (Harris Corporation), November 1989
The construction of a large reflecting surface is invariably a compromise between the technical requirements and what is economically achievable. During the past three years, the compact range team at Harris has learned a great deal about this process. While aligning and testing the Harris Model 1630/1640 Compact Ranges, we have gone through a long learning experience. This paper presents some of the results of that experience.
Improvements in polarization measurements of circularly polarized antennas
A. Newell (National Institute of Standards and Technology),D. Kremer (National Institute of Standards and Technology), J. Guerrieri (National Institute of Standards and Technology), November 1989
A new measurement technique that is used to measure the polarization properties of dual port, circularly polarized antennas is described. A three antenna technique is used, and high accuracy results are obtained for all three antennas without assuming ideal or identical properties. This technique eliminates the need for a rotating linear antenna, reduces the setup time when gain measurements are also performed, and reduces errors for antennas with low axial ratios.
Development of a lab-sized antenna test range for millimeter waves
J. Saget (Electronique Serge Dassault), November 1989
In the last few years, the interest in millimeter wave systems, like radars, seekers and radiometers has increased rapidly. Though the size of narrow-beamwidth antennas in the 60-200 GHz range is limited to some 20 inches, an accurate far-field antenna test range would need to be very long. The achievement of precision antenna pattern measurements with a 70' or even longer transmission length requires the use of some power that is hardly available and expensive. A cost-effective and more accurate solution is to use a lab-sized compact range that presents several advantages over the classical so-called far-field anechoic chamber: - Small anechoic enclosure (2.5 x 1.2 x 1.2 meters) meaning low cost structure and very low investissement in absorbing material. No special air-conditioning is needed. This enclosure can be installed in the antenna laboratory or office. Due to the small size of the test range and antennas under test, installation, handling and operation are very easy. For spaceborne applications, where clean environment is requested, a small chamber is easier to keep free of dust than a large one. - The compact range is of the single, front fed, paraboloid reflector type, with serrated edges. The size and shape of the reflector and serrations have been determined by scaling a large compact range of ESD design, with several units of different size in operation. The focal length of 0.8 meter only accounts in the transmission path losses and the standard very low power millimeterwave signal generators are usable to perform precision measurements. The largest dimension of the reflector is 1 meter and this small size allows the use of an accurate machining process, leading to a very high surface accuracy at a reasonable cost. The aluminum alloy foundry used for the reflector is highly temperature stable. - Feeds are standard products, available from several millimeter wave components manufacturers. They are corrugated horns, with low sidelobes, constant and broad beamwidth over the full waveguide band and symmetrical patterns in E and H planes. - The compact range reflector, feeds and test positioner are installed on a single granite slab for mechanical and thermal stability, to avoid defocusing of the compact range. - A micro-positioner or a precision X Y phase probe can be installed at the center of the quiet zone. Due to their small size, these devices can be very accurate and stable. Due to the compactness of this test range, all the test instrumentation can be installed under the rigid floor of the enclosure and the length of the lossy RF (waveguide) connections never exceeds 1 meter.
Virtual vertex compact range reflectors
D.W. Hess (Scientific-Atlanta, Inc.),A.L. Wilcox (Scientific-Atlanta, Inc.), V. Farr (Scientific-Atlanta, Inc.), November 1989
In an earlier paper the virtual vertex compact range reflector was introduced and data from a specific design was reported. This paper describes the extension of the vertical vertex serrated edge concept to other reflectors that serve a wider range of application. Two new 12 ft focal length reflectors have been built that possess 3 ft and 6 ft diameter symmetric test zones. We describe the electromagnetic considerations and the mechanical design approach that has been used for these reflectors. We demonstrate the performance with field probe data showing the excellent surface accuracy of these units.
A Measurement technique using gated ISAR imaging
P.A. Henry (Motorola GEG),R.W. Taylor (McDonnell Douglas Helicopter Co.), S. Brumley (DENMAR Inc.), November 1989
Measured component RCS results are frequently dominated by the test body and target mounting structures. This paper will present a measurement technique that will improve measurement accuracy using a less complex and expensive test body. The design of the test body and measurement geometry allows isolation in both range and cross range from the static return of the room and mounting structure. This is accomplished by first creating an ISAR image of the target and test body, gating the image in two dimensions, then transforming back into the frequency and spatial angle domains to determine the scattering levels of the target by itself. Details of this technique, covering both its advantages and limitations, will be discussed. Data will be presented to verify the approach and illustrate the level of performance attainable using this technique.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  • Member News

    Meet your AMTA 2021 Board of Directors

    AMTA 2020 Proceedings are Available for Download (for AMTA Members Only)

    AMTA 2020 Papers are Now Available Online in the AMTA Paper Archive

    In Remembrance: Dr. Eric Walton

    For those who did not attend this year's symposium, just a reminder to renew your membership before the end of this year

    (Helpful HINT) Don't recall your login credentials or AMTA number? Just click the Reset Password link on any page an follow the instructions

  • AMTA News

    AMTA Announces 2020 Best Papers - CLICK HERE

    SUBMIT Your 2021 Abstract Now - DEADLINE APRIL 23

  • Event News

    Computational Modeling of Range Errors Videos & Handouts Now Available
    Hosted by Raytheon Technologies - CLICK HERE

    Visit AMTA 2021 Website for the Symposium on October 24-29, 2021.

    Beware Event & Hotel Phishing Schemes - CLICK HERE