AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Accuracy

Evaluation of the Accuracy of the PTP Phase Retrieval Algorithm by Means of a Numerical/Statistical Approach
C.A.E. Rizzo, November 2000

Obtaining far-field radiation patterns of high frequency antennas (>80Ghz) from near-field measurements has been an important issue in the last twenty years. However with frequencies increasing into the millimetre and sub-millimetre bands, questions have been raised about possible limitations on the assessment of such antennas and in particular the measurement of phase. The PTP phase retrieval algorithm addresses the problem by extracting the phase from the knowledge of two amplitude data sets in the near-field. The accuracy of the algorithm is studied by simulation and measurement by means of a numerical/statistical approach. Pseudo-random phase apertures can be generated using Zernike polynomials, which in turn can be used as initial estimates for the algorithm. This paper shows some simulated and measured results for various separations. It can be seen that different pseudo-random phase functions can affect the accuracy of phase retrieved results in particular when the distance between planes is considerably small in relation to the AUT size.

Precision Positioner Alignment Techniques for Spherical Near Field Antenna Measurements Using Laser Alignment Tools
J.A. Fordhma,D. Kremer, J. Proctor, November 2000

The majority of precision spherical positioner alignment techniques used today are based on procedures that were developed in the 1970's around the use of precision levels and auto-collimation transits. Electrical alignment techniques based on the phase and amplitude of the antenna under test are also used, but place unwanted limitations on accurately characterizing an antenna's electrical/mechanical boresight relationship. Both of these techniques can be very time consuming. The electrical technique requires operator interpretations of data obtained from amplitude and phase measurements. The auto­collimation technique requires operator interpretations of optically viewed measurement data. These results are therefore typically operator dependent and the resulting error quantification can be inaccurate. MI Technologies has recently developed a mechanical alignment technique for Spherical Near-Field antenna measurements using a tracking laser interferometer system. Once the laser system has been set-up and stabilized in the operational environment; the entire spherical near-field alignment may be completed in a few hours, as compared to the much more lengthy techniques used with level/transit or electrical techniques. This technique also simplifies the quantification of the errors due to the inaccuracy of the alignment. This paper will discuss the effect of the alignment error on results obtained from spherical near-field measurements, and the procedures MI Technologies developed using a tracking laser interferometer system to obtain the precision alignment needed for a spherical near-field measurement.

Measured Error Terms for the Three-Antenna Gain-Measurement Technique
G.T. Park,D. Bodner, D. Kremer, D. Musser, J. Snyder, November 2000

This paper will detail the implementation and results of a gain calculation performed on standard gain horns (SGHs) in the LS and XN microwave bands. The three-antenna method was used to ensure the highest accuracy possible, and extensive efforts were made to minimize the error budget. The measurement was performed in a large anechoic chamber, with the receive and transmit antennas placed 4.6 meters high in opposing corners. The resulting fifteen meters of aperture separation (approximately 10D2/l. for LS band and 15D2/l for XN band) eliminated all measurable aperture interactions and greatly reduced multipath interference from chamber reflections. Rigorous analysis of the error terms proved this method to be both accurate and reliable. Typical values of measured error terms will be presented.

Cramer-RAO Bound System-Level Analysis for Multi-Mode Spiral Antennas; Single-Element and Arrayed
B.E. Fischer,K.M. Pasala, R.P. Penno, S.W. Schneider, November 2000

This paper considers the use of Cramer-Rao bound (CRB) to aid in providing accurate and quantitative system-level trades for antenna direction finding (DF). Past work has focussed on the use of spectral estimation techniques (e.g., MLM and MUSIC) to obtain needed DF accuracy. Here, the CRB is used to quickly assess tradeoffs in determining optimal antenna array positioning on a platform system. We develop the necessary CRB mathematical relations and demonstrate the potential advantage of using multimode spiral antennas over a standard linear phase interferometer (LPI). The standard LPI configuration is used as a baseline for comparison.

Accuracy and Calculation Sensitivity for AFRL Squat Cylinder RCS Calibration Standards
B.M. Kent,K.C. Hill, W.D. Wood, November 2000

(U) Precise radar cross-section (RCS) calibration are needed for all RCS measurement facilities. In 1996, AFRL began to advocate the use of a series of precision, short cylinder RCS calibration standards, demonstrating consistently greater accuracy than traditional sphere targets. Previous AMTA publications [1,2,3,4] demonstrated the overall measurement fidelity of these targets. However, questions regarding the accuracy and stability of the numerical RCS solutions to these cylinders continue to be raised. This paper will strictly and thoroughly examine the accuracy of several numerical techniques used to predict the AFRL calibration cylinder RCS, and will examine such "real world" issues as gridding sensitivity, conductivity vanat1ons, frequency bandwidth, and practical manufacturing tolerances.

New Compact Antenna Test Range at Allgon Systems AB
M. Boumans,B. Karlsson, November 2000

Allgon Systems AB has put a new compact antenna test range into operation in July 2000. The investment was triggered by Allgon's planned move to a new building. An indoor facility was preferred for fast and efficient operation. The present primary application is the measurements of base station antennas. The compact range is constructed using a single reflector with serrated edges. A sophisticated feed carrousel enables automatic changing of 3 feed systems. The size of the quiet zone is 3 meters. The initial frequency range is from 800 to 6000 MHz. However, the reflector accuracy allows future extensions to 40 GHz and higher. The cha mber size is 21 x 12 x 10.5 m (L x W x H). Absorber layout comprises 24, 36 and 48 inch absorbers. An overhead crane spans the entire facility. The positioner system is configured as roll over azimuth with a lower elevation over azimuth for pick-u p and small elevation angle measurements. Different sizes of masts and roll positioners are available, depending on the AUT. Instrumentation is based on a HP 8753. Software is based on the FR-959 Plus. Antenna measurement results show the performance of the facility.

Error Statistics in RF Measurements
R.B. Dybdal, November 1999

Error budget projections of measurement accuracy require statistical descriptions of the individual error sources. Thermal noise errors are well known and commonly used. Such statistics, however, have a zero mean Gaussian distribution and sadly are misapplied to the distributions of other error sources. The class of coherent RF errors, for example, has non-zero mean values and variances that differ from Gaussian values. Such statistics are described.

Characterization of Antenna Patterns by Means of Statistical Image Classification
J. McCormick,B. Ghinelli, November 1999

The accuracy of near field measurements have in the past largely been judged by inspection however the authors have developed an objective measure of the accuracy and repeatability of such measurements. This paper illustrates the measurement process and the techniques associated with statistical image classification used to confirm its accuracy and repeatability. The technique will be illustrated via the correlation of data sets acquired over a variety of different frequencies and scan plane areas. The examination of these measurements will demonstrate the applicability and sensitivity of the technique when the accurate assessment of highly correlated patterns is required.

Satellite Payload Parameter Measurements in a Compensated Compact Antenna Test Range
J. Habersack,H. Kress, H-J. Steiner, W. Lindemer, November 1999

Modern Satellite Antennas and Payloads are characterized by a lot of physical parameters like e.g. Radiation Pattern, Gain, EIRP, Flux Density, Gff and PIM, whereas the available time frame for measurements is getting shorter and shorter. The DSS Compensated Compact Range (CCR) allows a time efficient measurement of all payload parameters with high accuracy under controlled environmental conditions. The CCR consists of two doubly curved reflectors, which prevent inherent cross-polarization and create a very high constant amplitude and phase distribution in the quiet zone with a very good scanning performance. Most of the payload parameters can be measured directly or have to be calculated from a set of measurement values. For the G/T measurement of active antennas a new method for the noise power measurement was established. This paper describes the principle test set-ups with the corresponding measurement techniques to improve the measurement accuracy. Error budgets will be presented for pattern and gain measurement.

Technique for the Approximate Compensation of Antenna Illumination Taper from Near Field Measured, ISAR Data Sets, A
K. Krause, November 1999

This paper presents an approximate, practical technique for the compensation of antenna pattern amplitude taper effects that occur in near field RCS data. The technique uses inverse synthetic aperture radar (ISAR) data sets. Complete pattern determination uses an iterative approach over target rotation angle and frequency bandwidth, with a series of near field ISAR images as input to obtain the corresponding corrected, near field, frequency/azimuth pattern data. Assumed is direct target illumination using a source with a known angular illumination pattern. The technique and its application environment in the Boeing Near Field Test Facility is described. It is then demonstrated using a near field data collection range of 100 feet from the target center of rotation. The approach is shown to be effective for target sizes with cross range extents extending to the one-way 3 dB points of the illumination taper (two-way 6 dB points). Demonstration of compensation performance and a study of accuracy achievable versus the near field image parameters used is presented.

Modelling of Time Domain Antenna Measurements in a Small Anechoic Chamber
J. Marti-Canales,L.P. Ligthart, November 1999

The growing need of ultra-wide band measurements has promoted the research on real time domain (TD) antenna measurements. Theory has been already established, but practices still under development until the measurement regime becomes fully operational. In the Delft University Chamber for Antenna Measurements (DUCAT) there have been already provided outstanding results in a TD far-field configuration. A TD far field model of the facility has been developed in order to provide a key to improve the range performance and accuracy. This paper presents the model and considerations for establishing TD error correction techniques.

Low Cross-Polarized Compact Range Feeds
J.A. Fordham,J.H. Cook, November 1999

Compact antenna test ranges intended for low cross­ polarization antenna measurements require the use of feeds with polarization ratios typically greater than 40 dB across the included angle of the quiet zone as well as across the frequency band of interest. The design for a series of circular corrugated aperture feeds to meet these requirements is presented. The feeds are based on a circular waveguide OMT covering a full waveguide frequency band with interchangeable corrugated apertures to cover three sub-bands. In order to validate the design of this series of scalar feeds, high accuracy cross-polarization data was collected. The primary limiting factor in the measurement of the polarization ratio was the finite polarization ratio of the source antennas. A technique for correcting for the polarization ratio of the source is presented along with measured data on the feeds. The technique begins with the accurate characterization of the linear polarization ratio of the standard gain horns using a three antenna technique, followed by pattern measurements of the feeds, and ends with the removal of the polarization error due to the source antenna from the measured data. Measured data on these feeds is presented before and after data correction along with data predicted using the CHAMP® moment method software.

High Accuracy Cross-Polarization Measurements Using a Single Reflector Compact Range
C.A. Rose,J.H. Cook, November 1999

MI Technologies has developed a technique to achieve very high accuracy cross-polarization measurements using a single reflector compact range. The technique, known as the "Error Correction Code Algorithm" (ECCA) leverages the "ideal" performance of a single parabolic reflector when the feed axis is aligned to the parabola axis. ECCA mathematically corrects for the amplitude taper induced by the feed axis alignment. Historically, 'conventional' compact range polarization purity has been limited to »-30 dBi. The ECCA technique, however, lowers the cross-polarization error to »-48 dBi. This performance has been verified in two separate inter-range measurement comparisons with the National Institute of Standards and Technology. The results of these tests prove ECCA is an extremely accurate technique for low cross­ polarization measurements and provides a lower cost, superior performance alternative to dual­ reflector systems when low cross-polarization measurements are required.

Near Field Range Error at Off-Probe-Calibration Frequencies
R.E. Wilson,W.G. Scott, November 1999

Proper operation of a planar NFR (near field range) includes probe correction as part of the processing of the measured data to result in accurate far field angle patterns, particularly for low cross polarized patterns. The far field transform of the near field data produces the angular spectrum which is the product of the plane wave transmission coefficient pattern of the AUT (antenna under test) with the plane wave receiving coefficient pattern of the probe. Probe correction consists of dividing the angular spectrum by the complex probe angle pattern resulting in the pure far field pattern of the AUT [1]. For best accuracy of co and cross polarized AUT patterns one needs to use accurately measured probe complex co and cross polarized patterns in probe correction for each NFR test frequency. The most accurate probe measurements are usually obtained from specialized test laboratories. However, if the number of frequencies is large, this may create problems due to cost or schedule. Because of this it is typical to procure probe calibration at only a few frequencies spanning the test band for each AUT even though pattern measurements are needed at several additional frequencies falling between the calibration frequencies. A typical strategy at any given test frequency is to perform probe correction using the nearest-neighbor-frequency probe calibration data. This strategy produces some unknown error in the processed probe corrected far field patterns of the AUT at each non-calibrated frequency. Inthis paper we will show a method for estimating the non-calibrated frequency probe correction error for co and cross polarized patterns with examples.

Generalized Recursive Algorithm to Scattering by an Object Inside a Hollow Dielectric Waveguide Used as a Facility for Scattering Measurements
T. Kushta,K. Yasumoto, V. Kiseliov, November 1999

The theoretical study of scattering by various objects inside a circular hollow dielectric waveguide (HDW) is important to analyze the overall accuracy of the method in which this guiding structure plays a role of the main component of a micro-compact compact range. Here, we propose an theoretical approach to the solution of the problem of electromagnetic scattering from a spherical object inside a circular HDW based on the well-known method of separation of variables and the concept of recursive T-Matrix algorithm. Owing to the approach, we studied electromagnetic properties of a spherical scatterer inside a circular HDW as well as obtained basis to develop an approach for calculations of scattering by objects of other shapes. The results calculated for metallic spherical scatterers inside circular HDW were compared with corresponding measurements data of backward and forward scattering characteristics at 4-mm wave band.

RCS Measurements of LO Features on a Test Body
J. Lutz,D. Mensa, K. Vaccaro, November 1999

The paper presents an example of the design process undertaken to determine the RCS response of LO features mounted on a test body. Although not unique, the example considers the various aspects which determine the accuracy of the final data in the design of the experiment and signal processing. The high quality of experimental results illustrate the potential of using an integrated approach in which the designs of the test body, the measurement process, the signal processing techniques, and validation of results are optimally applied to meet the objective not achievable by conventional means.

Time and Frequency Antenna Measurement With One Signal Receiver
B. Levitas,D. Ponomarev, November 1999

Antennas characteristics can be measured in two ways. lfrequency Domain Method (FDM) is more widely known. The main measuring instruments: Microwave Generator and Receiver. In Time Domain Method (TDM) measurements are fulfilled by using superwide­ band pulses. The main measuring instruments: Pulse Generator and Sampling Oscilloscope. TDM shows a number of advantages but for narrow-band antennas TDM is difficult to apply and FDM is required. At the testing polygons aimed to measure various antennas we set equipment allowing to use both measurement methods. For TDM we used a two channel sampling converter SD200 of Geozondas production with bandwidth 0-18 GHz. To unify measurements we developed a 3-channel sampling converter SD303 allowing besides pulse to measure sine wave amplitude and phase difference in dynamic range 100 dB. The third channel is used for synchronization. Thus the same instrument assures antenna measurements both in TDM and FDM. At 100 m distance the following characteristics are obtained in Time and Frequency Domains Measurements: Bandwidth 1- 18 GHz. Antenna pattern dynamic range 60 dB Gain measurement accuracy 0.5 dB Phase difference between 2 antennas error 0.5 - 3° (depends on frequency). Hardware, software and digital signal processing algorithms are considered.

Number of Spherical Wave Modes Required for the Prediction of Radiated EMI by a Near-Zone Measurement
Laitinen. T.A.,P. Vainikainen, November 1999

Characterization of radiated EMI by means of near­ zone measurements is examined by computer simulations. Electric field radiated by a test structure is expanded in spherical wave modes. The influence of the number of spherical wave modes on the accuracy to predict the maximum far-field magnitude and the total radiated power is examined. The examinations of this paper support the electric field measurements of small equipment at small measurement distances in the standard radiated EMI frequency range 30 - 1000 MHz. Results are presented as a function kr0, where k is the wave number and r 0 is the radius of the minimum sphere which fully encloses the EUT. Results of this paper give valuable guidelines for choosing an appropriate number of measurement locations for predicting the far field by means of a near-zone measurement.

ERP Measurement Issues
R.B. Dybdal, November 1998

Measurements of the ERP radiated by an antenna and the ERP received from a distant antenna are addressed. Alternative measurement techniques are described and correction for polarization mismatch loss, pointing error and propagation loss is discussed. The statistics of the measurement errors are presented for error budget projections of measurement accuracy.

Probe Correction Effects on Planar, Cylindrical and Spherical Near-Field Measurements
G. Hindman,D.S. Fooshe, November 1998

The accuracy of the probe antenna pettern used for the probe-corrected near-field measurements is critical for maintaining high accuracy results. The probe correction is applied differently in the three standard near-field techniques - planar, cylindrical, and spherical. This paper will review the differences in sensitivity to probe correction for the three techniques and discuss practical of probe correction models and measurements.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31