AMTA Paper Archive

 

Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)

 

Search AMTA Paper Archive
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Accuracy
Implementation and Analysis of an Improved Accuracy Microwave Measurement Method for Low Loss Dielectric Materials
M. Scott,J. Schultz, D. Reid, S. Blalock, B. Cieszynski, November 2011
A free space transmission line measurement method for dielectric constant and loss tangent determination in low-loss dielectric materials has been analyzed and implemented. This method utilizes dielectric materials with thicknesses greater than half the wavelength in the material to obtain greater sensitivity for determining intrinsic dielectric properties. An analysis of the process sensitivities and experimental measurements has been utilized to estimate the accuracy and lower limits of the dielectric property extractions from the reflection loss magnitude.
RF Target and Decoy Simulator
D. Wayne, November 2011
RF guided missile developers require flight simulation of their target engagements to develop their RF seeker. This usually involves the seeker mounted on a Flight Motion Simulator (FMS) as well as an RF target simulator that simulates the signature and motion of the target. Missile defense developers, whose job it is to defend against guided missiles, require a similar test environment adding the ability to insert decoy RF targets that can spoof the seeker. Both seeker development and counter-measure development can benefit from an RF test facility that can provide RF targets and decoys controlled by a real-time simulation. This paper addresses an RF Target and Decoy Simulator developed by MI Technologies that provides this test capability. The direction of the target and decoy emitters is independently controlled such that the centerlines of their radiated main antenna lobes are always directed at the RF seeker. Each emitter can be independently and simultaneously commanded along a spherical surface. High rates of acceleration and velocity are achieved all the way out to the ends of the test area to simulate the high line of sight rate that occurs at missile closure. The simulator is capable of safely stopping a decoy racing to the ends of the target area with minimal over-travel. Collision avoidance provisions prevent target and decoy from damaging each other during the simulation. The paper presents a description of the simulator, pertinent tradeoffs considered in the design and accuracy data of the simulator’s performance.
Accuracy of Near Field Pattern Measurements Performed with Analytical Probe Models
F. Boldissar,A. Haile, November 2011
Calibration of probes for planer near field range measurements is generally required to obtain accurate cross-polarization (xpol) data; however, probe calibration is costly and time consuming. Using analytical models in place of calibration is generally much more cost effective, but may result in larger measurement errors. In a previous paper [1], we showed that simple models of copol probe patterns with zero xpol can give accurate measured results, provided that the probe xpol is much better, generally 10-15 dB better, than the Antenna Under Test (AUT). The next question is “Can a lower performing (and cheaper) probe be used if both the copol and xpol probe patterns are modeled?” In this paper, we compute AUT xpol measurement errors that result from probe xpol errors, and we compare far field AUT patterns processed using probe models with patterns processed with calibrated probe files.
Spherical Near-Field Measurements at UHF Frequencies with Complete Uncertainty Analysis
A. Newell,P. Pelland, B. Park, T. White, November 2011
A spherical near-field measurement range at Nearfield Systems Inc. has recently been used to measure gain, pattern and polarization of a multi-element helix array operating in the UHF band. Verification of gain performance over the operating band was of primary importance and so major efforts were made to obtain the best possible gain results and to quantify the gain uncertainty through a complete error analysis. A single element helix gain standard was first calibrated and the estimated uncertainty in this calibration was 0.35 dB. A double ridged horn was to be used as the probe for the spherical near-field measurements and so the patterns of the horn at all test frequencies were measured on the spherical range using identical horns as the AUT and the probe. From these measurements, probe pattern files were generated that could be used to perform the probe correction in the measurements of the helix gain standard and the multi-element array. The helix gain standard was then installed in a new spherical near-field range at NSI with the double ridged horn as the probe. The range used a specially designed phi-over theta rotator that could support and rotate the array and maintain the required position accuracy. The chamber was lined with 36 inch absorber. Spherical measurements were then performed and the data processed to provide the far-field peak amplitudes at each frequency that were necessary for gain measurements. The far-field peak values are equivalent to the far electric field for the gain standard and are compared to the same parameter for the multi-element array to produce the final gain results. The helix array was then installed in the spherical range and a series of measurements were performed to produce the far-field gain, pattern and polarization results and also to provide the data for the complete 18 term uncertainty analysis. The uncertainty in the gain measurements was 0.45 dB and the axial ratio uncertainty was 0.11 dB.
Array antenna diagnostics with the 3D reconstruction algorithm
Cecilia Cappellin,TICRA, November 2012
The 3D reconstruction algorithm is applied to a slotted waveguide array measured at the DTU-ESA Spherical Near-Field Antenna Test Facility. One slot of the array is covered by conductive tape and an error is present in the array excitation. Results show the accuracy obtainable by the 3D reconstruction algorithm. Considerations on the measurement sampling, the obtainable spatial resolution, and the possibility of taking full advantage of the reconstruction geometry are provided.
Robotically Controlled mm-Wave Near-Field Pattern Range
Joshua Gordon,NIST, November 2012
The Antenna Metrology Lab at the National Institute of Standards and Technology in Boulder Colorado has developed a robotically controlled near-field pattern range for measuring antennas and quasi-optical components from 50 GHz to 500 GHz. This range is intended to address the need for highly accurate antenna pattern measurements above 100 GHz for a variety of applications including remote sensing, communications and imaging. A new concept in near-field range systems, this system incorporates the positioning repeatability of a precision industrial six-axes robot, six-axes parallel kinematic hexapod, and high precision rotation stage, integrated with a highly accurate laser tracking system. Programmable robot positioning allows the system geometry to be configured for spherical, planar, and cylindrical scans, as well as gain extrapolation measurements. Variable scan volume accommodates different test antenna sizes. Positioning accuracy better than 10 µm is predicted. Specifics of the system design, operating specifications and configurability will be presented.
A Novel Approach to RCS Measurements Utilizing Knowledge-Based Information
David Berger,System Planning Corporation, November 2012
Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern. In order to perform more complete characterizations, a spherical experimental layout has been developed in 2007 at CEA for indoor near field monostatic RCS assessment. This experimental layout was composed of a 4 meters radius motorized rotating arch (horizontal axis) holding the measurement antennas while the target was located on a polystyrene mast mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allowed full 3D near field monostatic RCS characterization. A new study was conducted in 2011 in order to achieve a more accurate positioning of the measurement antenna. The main objective is to enhance the RCS measurement performances, especially the environment subtraction directly related to the positioning repeatability of the measurement antenna. This new mechanical design has therefore been optimized to allow a +/-100° azimuth range with an angular positioning repeatability of less than 1/1000°. To achieve this level of accuracy, several keys design elements were considered: robust mechanical design, position control system… This paper describes the new experimental layout and the results of a positioning accuracy assessment campaign conducted using a laser tracker.
Precision Motion in Highly Accurate Mechanical Positioning
Tim Schwartz,MI Technologies, November 2012
Numerous applications for antenna, radome and RCS measurements require a very accurate positioning capability to properly characterize the product being tested. Testing of weapons (missiles), guidance systems, and satellites, among other applications, require multi-axis position accuracies of a few thousandths of an inch or degree. For global positioning, spherical error volumes can be extremely small having diameters of .002 inches to .005 inches. This paper addresses the issues that must be resolved when highly accurate mechanical positioning is required. Many factors such as thermal stability, axis configuration, bearing runout and mechanical alignment can adversely affect the overall system accuracy. Additionally, when examined from a global positioning system perspective, the accuracy of the entire system is further degraded as the number of axes increases. Successful system implementation requires carefully examining and addressing the most dominant error factors. The paper will cover current tools and techniques available to characterize and correct the contributing errors in order to achieve the highest possible system level accuracy. A recently delivered 4 ft radius SNF arch scanner, which achieved ± .0043° global positioning accuracy, will provide insight into these methods and show how the dominant factors were addressed.
Achieved mechanical Accuracy of a 3D RCS spherical near field Arch Positioning System
Pierre MASSALOUX,CEA, November 2012
Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern. In order to perform more complete characterizations, a spherical experimental layout has been developed in 2007 at CEA for indoor near field monostatic RCS assessment. This experimental layout was composed of a 4 meters radius motorized rotating arch (horizontal axis) holding the measurement antennas while the target was located on a polystyrene mast mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allowed full 3D near field monostatic RCS characterization. A new study was conducted in 2011 in order to achieve a more accurate positioning of the measurement antenna. The main objective is to enhance the RCS measurement performances, especially the environment subtraction directly related to the positioning repeatability of the measurement antenna. This new mechanical design has therefore been optimized to allow a +/-100° azimuth range with an angular positioning repeatability of less than 1/1000°. To achieve this level of accuracy, several keys design elements were considered: robust mechanical design, position control system… This paper describes the new experimental layout and the results of a positioning accuracy assessment campaign conducted using a laser tracker.
An Innovative Technique for Positioner Error Correction
Roger Dygert,MI Technologies, November 2012
Antenna measurement systems employ mechanical positioners to spatially orient antennas, vehicles, and a variety of other test articles. These mechanical devices exhibit native positioning accuracy in varying degrees based on their design and position feedback technology. Even the most precise positioning systems have insufficient native accuracy for some specific applications. As the limits of economical positioning accuracy are approached, a new error correction technique developed by MI Technologies satisfies these higher accuracy requirements without resorting to extreme measures in positioner design. The new technique allows real-time correction of repeatable positioning errors. This is accomplished by (1) performing a finely grained measurement of positioner accuracy, (2) creating a map of the errors in both spatial and spatial frequency domains, (3) separating the errors into their various components, and (4) applying correction filters to algorithmically perform error correction within the positioner control system. The technique may be used to achieve extreme positioning accuracy with positioners of high native accuracy. It may also be applied to conventional (synchro feedback) positioners to achieve impressive results with no modifications at all to the positioner. The following paper discusses the new error correction technique in detail.
Major challenges to wearable and textile antenna measurements in the spherical format
Pawel Kabacik,Wroclaw University of Technology, November 2012
The paper presents in-house developed antenna positioner capable to acquire radiation pattern in the full spherical format for wearable and textile antennas. The positioner features remarkable advantages and mitigates troublesome to measurement accuracy shadowing by the positioner structure. Furthermore, development methodology of the human phantom without heavy liquids is proposed. Since evaluation of wearable and textile antennas must put considerations to major variations in antenna performance during antenna operation, we have found an urgent need to define new engineering measure that will help in quick evaluation of such antennas.
An Improved Capacitance Model for Permittivity Measurement
Ming Chen,ElectroScience Lab, The Ohio State University, November 2012
The improved calibration model proposed in this paper is based on the traditional capacitance model which suffers from errors caused by the assumption that the capacitance is independent of frequency and the permittivity of the ambient medium under test. By analyzing the near-zone field of the coaxial opening, we introduce the new near-field capacitance to account for the dependency on the external permittivity. Simulation results show that the calibration error is significant reduced for low and moderate loss medium. And the calibration of the unknown coefficients simply requires the pre­measurement of three known material including air, which provides convenience for the real field measurement. Measurement results obtained by a novel wideband in-situ coaxial probe are included to prove the accuracy improvement improved calibration model. by using this
Wideband Measurements Of The Forward Rcs And The Extinction Cross Section
Christer Larsson and Mats Gustafsson, November 2012
This paper describes the development of a method based on measurements of the radar cross section (RCS) in the forward direction to determine the extinction cross section for the 2.5-38GHz frequency range using the optical theorem. Forward RCS measurements are technically complicated due to that the direct signal has to be subtracted from the total signal at the receiving antenna in order to extract the forward RCS. The efficiency of this subtraction as a function of time is evaluated. A traditional calibration method using a calibration target and a second method that does not require a calibration target are investigated and compared. The accuracy of the forward RCS measurements is determined using small spheres of different sizes. The spheres have a forward RCS that is straightforward to calculate with good accuracy. The method is also extended to polarimetric measurements on a small helix that are compared to theoretical calculations.
Electronically Controlled Tilt Angle Of A Linearly Polarized Signal At Ka-Band
Steven R. Nichols, November 2012
As part of a target simulator [1], a linearly polarized signal was required with a variable tilt angle that could be controlled electronically and changed at a 1 kHz rate. However, microwave components available in the 33.4 – 36 GHz operating range were inadequate to achieve the desired performance. A novel approach was developed to downconvert the input signal to a lower frequency range and use vector modulators available in this band to produce the appropriate phase and amplitude changes in each path, then upconvert back to the desired operating frequency to drive an orthomode transducer. A calibration and measurement procedure was developed to determine the vector modulator input settings that produced the most accurate tilt angles and best cross-polarization performance. By iteratively measuring cross-polarization and tilt angle, then adjusting the vector modulator controls, a tilt angle accuracy of +/-1 degree was achieved with a crosspolarization of -25 dB, exceeding the required performance. This paper provides an overview of the concept, a block diagram of the design, discussion of the calibration and measurement procedure, and a summary of the results achieved.
A Detailed PO / PTD GRASP Simulation Model for Compensated Compact Range Analysis with Arbitrarily Shaped Serrations
Carsten Schmidt, Alexander Geise, Josef Migl, Hans-Jürgen Steiner, Hans-Henrik Viskum, October 2013
Compensated compact ranges offer accurate testing techniques for large devices under test. The quiet zone field performance is affected by diffracted field components from the sub and main reflector edges even though they are equipped with serrations in order to reduce this effect. The size, shape, and alignment of the serrations have a strong influence on the range performance and are important design parameters. For performance estimation and optimization, detailed EM simulation models are required. Integral equation methods like the Method of Moments (MoM) with Multilevel Fast Multipole (MLFMM) acceleration promise accurate simulation results. However, the memory requirements limit simulations nowadays to lower frequencies due to the electrical size of the compact range reflectors. For example, the main reflector of Astrium's Compensated Compact Range CCR 120/100 including serrations is 1860 ? by 1600 ? in size at 40 GHz. Asymptotic methods are suitable for objects of this size, however, the accuracy has to be investigated and is related to the degree of detail in the model. A detailed simulation model based on the Physical Optics (PO) / Physical Theory of Diffraction (PTD) method is developed in GRASP. Each serration is realized as an individual scatterer and can thus be modeled with arbitrary shape and orientation. Different modeling techniques have been applied in order to realize an accurate simulation model with acceptable runtime. In this paper, the simulation model will be described in detail and a comparison of the quiet zone fields will be drawn with the MoM / MLFMM tool Feko as well as with quiet zone probing measurements.
Ground Reflection Error Mitigation for the US Army’s Electronic Proving Ground (EPG) Compact Range
Jeffrey Bean, Stephen Blalock, Michael Hutsel and Stewart Skiles, October 2013
Compact range measurement facilities have been used successfully for many years to characterize antenna performance as well as radar signature. This paper investigates strategies for improving compact range measurement accuracy by mitigating errors associated with ground reflections inherent in most range designs. A methodology is developed for strategically modifying, or patterning, the surface between the range source antenna and the reflector to reduce error terms, thereby increasing measurement accuracy. Candidate patterns were evaluated using a full-wave computational finite-difference time-domain (FDTD) model at VHF/UHF frequencies to determine baseline performance and develop trade rules for more advanced designs. Physical optics (PO) models were used to analyze the final design at the frequencies of interest.
RCS Rotator/Pylon Architecture – Pushing Back the Boundaries of Structural and Operational Performance
Mark Hudgens,Eric Kim, November 2013
The need to maintain very low observability, along with the need to manipulate the model through a large range of motion, result in a challenging set of problems. These have been effectively addressed over decades of RCS equipment design. In recent years however, RCS applications have become much more demanding. Models are ever larger and heavier, with length exceeding 150 feet, and with weight up to 50,000 lbs. Required accuracy with some applications has increased to ±0.01°, an increase of 67% as compared to legacy values. MI Technologies has developed products that significantly expand the structural and operational envelopes of rotator/pylon systems to meet the demand for higher performance. This paper presents the various challenges encountered in RCS Rotator and Pylon design, and the innovative solutions that have arisen from recent engineering efforts.
Millimeter Wave Polarization Calibration for Near-Field Measurements
Edmund Lee,Ed Szpindor, John Aubin, Russell Soerens, November 2013
Abstract—In order to optimize accuracy of near field measurements, it is required not only to acquire data for two orthogonal polarizations, but the relative amplitude and phase balance between the two channels must also be accurately matched. This can be difficult at millimeter wave frequencies because of the transmission lines and other components involved. ORBIT/FR has explored multiple methods of achieving optimum vertical and horizontal polarization matching and found a very simple solution to achieve acceptable results. Some of the methods investigated included the use of dual-polarized feeds, dual single-polarized feeds mounted adjacently, waveguide rotary joints with a mechanically rotated feed, and a mechanically-rotated feed using a 1.0 mm coaxial-based cable. Interestingly, the mechanically-rotated feed with coaxial cable provided acceptable results on par with or better than the other methods, which moreover results in a very simple implementation in the measurement system. Measured results are presented for the chosen implementation demonstrating the near field data quality is adequate for a variety of antennas.
Selection Criteria for Near-field Gain Techniques
Gregory Masters,Patrick Pelland, November 2013
Abstract— Several gain measurement techniques exist for near-field antenna ranges. These include Comparison-gain, Direct-gain and Three-antenna gain methods. Each technique has its own unique advantages and disadvantages in terms of accuracy, cost and measurement time. Range operators must understand the differences between these techniques in order to properly configure their test system to best suit their requirements. This paper surveys each of the gain techniques and identifies the relative advantages of each. As part of the survey, all three techniques were performed on three types of near-field antenna measurement systems: Planar, Cylindrical and Spherical. The results of this paper provide the reader with a practical understanding of each technique, the formulas required, and real-world examples for the trade-offs needed to outfit a range for fast and accurate gain measurements while balancing cost and schedule.
High Gain Antenna Back Lobes from Near-Field Measurements
George Cheng,Yong Zhu, Jan Grzesik, November 2013
Abstract -We propose a method of utilizing near-field spherical measurements so as to obtain the back lobes of high gain antennas without sacrificing the accuracy of the far-field, high-gain main lobe prediction. While a spherical scan is perfectly adequate to gauge the relatively broad back lobes, it is in general inadequate to capture the required details of a sharp forward peak. We overcome this difficulty through recourse to our Field Mapping Algorithm (FMA), which latter allows us to assemble planar near-field data based upon the spherical measurements actually acquired. In particular, planar data of this sort on the forward, main-lobe side offers the standard route to predicting the desired, high-gain, far-field pattern. Our spherical-to-planar FMA near-field data manufacture showed excellent agreement with direct planar near-field measurements for a slot array antenna, each one of them, naturally, underlying a common, far-field, high-gain pattern.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  • Member News

    Meet your AMTA 2021 Board of Directors

    AMTA 2020 Proceedings are Available for Download (for AMTA Members Only)

    AMTA 2020 Papers are Now Available Online in the AMTA Paper Archive

    In Remembrance: Dr. Eric Walton

    For those who did not attend this year's symposium, just a reminder to renew your membership before the end of this year

    (Helpful HINT) Don't recall your login credentials or AMTA number? Just click the Reset Password link on any page an follow the instructions

  • AMTA News

    AMTA Announces 2020 Best Papers - CLICK HERE

    SUBMIT Your 2021 Abstract Now - DEADLINE APRIL 23

  • Event News

    Computational Modeling of Range Errors Videos & Handouts Now Available
    Hosted by Raytheon Technologies - CLICK HERE

    Visit AMTA 2021 Website for the Symposium on October 24-29, 2021.

    Beware Event & Hotel Phishing Schemes - CLICK HERE