AMTA Paper Archive

 

Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)

 

Search AMTA Paper Archive
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Accuracy
Implementation of a "Cam" as an RCS Dual-Cal Standard
Sarah Naiva,Michael Baumgartner, Peter Collins, Timothy Conn, November 2007
The 2004 AMTA paper entitled “The “Cam” RCS Dual-Cal Standard” introduced the theoretical concept of the “cam,” a new calibration standard geometry for use in a static RCS measurement system that could simultaneously offer multiple “exact” RCS values based on simple azimuth rotation of the object. Since that publication, we have constructed a “cam” to further explore its utility. The device was fabricated to strict tolerances and its as-built physical geometry meticulously measured. Utilizing these characteristics and moment-method analysis, a high-accuracy computational electromagnetic (CEM) “exact” file required for calibration was produced. Finally, the “cam” was evaluated for its efficacy as a single device that could be utilized as a dual-cal standard. This development was conducted with a particular focus on the hypothesized improvements offered by the new standard, such as the elimination of frequency nulls exhibited by other resonant-sized calibration devices, and improved operational efficiency. In this follow-on paper, we present the advantages to and challenges involved in making the “cam” a viable RCS dual-cal standard by describing the fabrication, modeling and performance characterization.
A Compact but Highly Flexible 5-axis Positioner
Maurice Paquay,Alain Bonnet, November 2007
ACC has developed for the ESA-ESTEC CATR a compact but highly versatile 5-axis positioner. It is composed of a roll axis, upper azimuth, elevation, translation and lower azimuth axis. The clearance between the floor and the translation stage is designed to pass over a 12” walkway absorber while the roll axis height is only 155 cm (~5 feet). The standard configuration for medium or high gain antennas is the roll-over-azimuth or elevation-over­azimuth configuration with a vertical interface for the AUT. For omni-directional antennas and RCS measurements, the positioner can be configured as a low profile azimuth positioner with a horizontal interface without a blocking structure behind the AUT. The positioner can also be configured for bistatic RCS measurements and Spherical Near Field. With the addition of a linear scanner, the Quiet Zone can be scanned in a polar way but also planar scanning is possible. Other key parameters are: angular accuracy: 0.01°, accuracy of the translation axis: 0.01 mm, load capacity 100 kg.
Position Correction using a Multi-Axis Controller for High-Accuracy Measurements
Mark Bates,Mark Burdack, Roni Braun, November 2007
Current means to improve position accuracy in antenna ranges are often expensive, consume important CPU time, and/or limit data acquisition speed. By taking advantage of axes with good repeatability, higher multi-dimensional positioning accuracy can be achieved directly by a controller to ease complexity and achieve real-time position correction. A product family of controllers brings this capability to fruition. Comparison analysis of field data demonstrates improved accuracy with no measurement speed degradation. Results indicated a considerable accuracy improvement limited by axis repeatability. Existing and new antenna ranges can benefit from this simple cost-effective approach to improved position accuracy.
Experimental Verification of the Focal Plane APC Method with the VAST-12 Antenna
Luis Rolo,Maurice Paquay, November 2007
Boumans [1] has introduced an alternative to the classical (Advanced) Antenna Pattern Correction (A)APC method by moving the range feed in the focal plane of a Compact Antenna Test Range (CATR) instead of moving the Device Under Test (DUT) around in the Quiet Zone (QZ). The advantages are clear: it is easier (cost and accuracy wise) to implement a feed scanner than a DUT scanner; the method can be used for azimuth and elevation patterns and it can even be implemented using multiple feed horns to get to the same measurement time as with a single range feed. The capabilities of defocused measurements in the Compact Payload Test Range (CPTR) at ESA/ESTEC have been previously assessed [2] and they revealed a triply reflected ray [2] and a QZ ripple induced by periodic surface inaccuracies [3]. This paper focuses on verifying the performance of the Focal Plane AAPC method for these effects. Use has been made of the well known DTU-ESA VAST-12 antenna [3].
Outdoor RCS Measurement Range for Spaceborne SAR Calibration Targets
Björn Döring,Marco Schwerdt, Robert Bauer, November 2007
The Microwaves and Radar Institute regularly performs calibration campaigns for spaceborne synthetic aperture radar (SAR) systems, among which have been X-SAR, SRTM, and ASAR. Tight performance specifications for future spaceborne SAR systems like TerraSAR-X and TanDEM-X demand an absolute radiometric accuracy of better than 1 dB. The relative and absolute radiometric calibration of SAR systems depends on reference point targets (i. e. passive corner reflectors and active transponders), which are deployed on ground, with precisely known radar cross section (RCS). An outdoor far-field RCS measurement facility has been designed and an experimental test range has been implemented in Oberpfaffenhofen to precisely measure the RCS of reference targets used in future X-band SAR calibration campaigns. Special attention has been given to the fact that the active calibration targets should be measured under the most realistic conditions, i. e. utilizing chirp impulses (bandwidth up to 500 MHz, pulse duration of 2 µs for a 300 m test range). Tests have been performed to characterize the test range parameters. They include transmit/receive decoupling, background estimation, and two different amplitude calibrations: both direct (calibration with accurately known reference target) and indirect (based on the radar range equation and individual characteristics). Based on an uncertainty analysis, a good agreement between both methods could be found. In this paper, the design details of the RCS measurement facility and the characterizing tests including amplitude calibration will be presented.
Application of the SWE-To-PWE Antenna Diagnostics Technique to an Offset Reflector Antenna
Cecilia Cappellin,Aksel, Frandsen, Olav Breinbjerg, November 2007
A new antenna diagnostics technique has been developed for the DTU-ESA Spherical Near-Field Antenna Test Facility at the Technical University of Denmark. The technique is based on the transformation of the Spherical Wave Expansion (SWE) of the radiated field, obtained from a spherical near-field measurement, to the Plane Wave Expansion (PWE), and it allows an accurate reconstruction of the field in the extreme near-field region of the antenna under test (AUT), including the aperture field. While the fundamental properties of the SWE-to-PWE transformation, as well as the influence of finite measurement accuracy, have been reported previously, we validate here the new antenna diagnostics technique through an experimental investigation of a commercially available offset reflector antenna, where a tilt of the feed and surface distortions are intentionally introduced. The effects of these errors will be detected in the antenna far-field pattern, and the accuracy and ability of the diagnostics technique to subsequently identify them will be investigated. Real measurement data will be employed for each test case.
Antenna Measurement at 650 GHZ With A Planar Near-Field Scanner
Aki Karttunen,Matti Vaaja, Antti V, Raisanen, November 2007
Accurate antenna measurements at sub-millimeter frequencies are very challenging. Especially the phase measurement accuracy is usually limited by the mechanical accuracy of the measurement equipment. The measurement techniques used, and the measurement results of a dual reflector feed system (DRFS) at 650 GHz are presented in this paper. Planarity error compensation technique was used that enabled accurate correction to the measured phase pattern without accurate pre-existing information of the planarity error of the planar near-field scanner. The measured DRFS beam agrees well with the simulated and the achieved measurement accuracy is good.
A Method to Correct Measurement Errors in Far-Field Antenna Ranges
Scott A Goodman,Inder J. Gupta, PhD, November 2007
Now-a-days, far-field ranges are being used to measure antenna radiation patterns. Two main types of ranges used are used for these measurements: direct and indirect illumination. In either case, the accuracy of the measurement is dependent upon the quality of the range quiet-zone fields. In direct illumination, phase and amplitude taper cause discrepancies in the fields. For indirect illumination, only amplitude taper must be accounted for. Additionally, stray signals and cross-polarization will further distort the quiet-zone fields and lead to measurement errors. This new methodology starts with the measured antenna data and a priori knowledge of the incident fields and estimates an Effective Aperture Distribution (EAD). The EAD compensates for these sources of error and can be used to predict the far-field radiation pattern of the antenna under test. Analytical results are presented for taper and stray signal analysis.
UCLA's Millimeter-Wave Bi-polar Planar Antenna Measurement System: A Novel Portable Design
Timothy Brockett,Yahya Rahmat-Samii, November 2007
As new antenna designs reach higher frequencies and smaller sizes, traditional large scale antenna chamber systems become ill-suited for measurement. External mixing, room-sized chambers, and expensive test equipment add large costs and burden to antenna measurement systems. A smaller, more cost effective system is proposed. Using the bipolar planar scanning technique developed at UCLA, a portable and movable millimeter-wave antenna chamber is currently under development. The chamber is being designed to fit on the end of a standard optical table and enjoys the space-saving and accuracy inherent to the bipolar planar configuration. Simple construction of the chamber will allow relatively easy assembly and disassembly and allow movement of the chamber from one table to another, if needed. Antenna of diameters up to 40cm can be accommodated and scan planes of up to ~160cm can be measured. Millimeter-wave frequencies from around 30GHz to 67GHz can be measured. Antennas measured will use planar near-field to far-field techniques. In particular, the post-process will follow the OSI/FFT method and will incorporate the phase retrieval techniques developed for the bipolar configuration. These phase-less measurements will allow the use of scalar millimeter-wave test equipment with much lower cost than comparable vector test equipment.
Design, Alignment and Calibration Requirements for a Sub-Millimeter Wave Frequency Tiltable Lightweight Scanner
Peter Bond,G. A. Ediss, November 2007
This paper discusses design aspects related to a tiltable lightweight near-field scanning system for use at sub-millimeter frequencies. It addresses design issues as they relate to accuracy and scanner distortions from multiple causes. Calibration methods to measure and correct for anticipated and unanticipated errors are briefly addressed. Actual test results are presented. The tiltable scanner being discussed was designed for the Atacama Large Millimeter/submillimeter Array (ALMA) [1] and is being used by the National Radio Astronomy Observatory (NRAO) [2]. It has many other applications by virtue of its light weight (approx. 120 lbs) and ability to be oriented at different angles. These include flight-line testing and other in-situ antenna test applications.
Measurement Accuracy of Stereolithography (SLA) Scale Models
F. Plonski,A. Hoorfar, V. Mancuso, November 2006
Hand-made scale models in antenna measurements have been used since the late 1940s. Today, aircraft models are fabricated using a stereolithography (SLA) process and the Computer Aid Design (CAD) for manufacturing the full size aircraft. This is the fabrication method used for the V-22 1/15th scale model. Once the SLA machine is programmed, these models are very inexpensive to produce. In this paper, antenna patterns measured on the V-22 scale model are compared with antenna patterns measured on the aircraft in-flight. Comparison of the patterns shows high correlation. Figure 1 V-22 Aircraft
Deriving Far-Field Performance Parameters from Near-Field Amplitude Measurements of Wireless Devices
P Iversen,S. Gaymay, November 2006
The CTIA (The Wireless Association – www.ctia.org) were the first to publish a widely accepted test plan for antenna performance testing of “live” mobile phones[1]. The test plan describes the use of phantom heads and involves recording transmitted power and receiver sensitivity information over a full sphere to derive parameters such as Total Radiated Power (TRP) and Total Integrated Sensitivity (TIS). The test plan, has until now, assumed that testing is performed in the far-field at test distances greater than 2D2/.. For typical mobile phone frequency and device test diameters (assumed 300mm in the CTIA test plan), this has not been a constraint. However, as such testing evolves to include the various versions of IEEE 802.11 combined with new devices such as larger laptops and other consumer electronics, a far-field test requirement would lead to very large test facilities. Using experiments and rigorous simulations, this paper will show that for the commonly accepted performance criteria, the far-field requirement is unnecessarily strict. A minimum distance requirement based on the geometry and probe pattern is proposed which will ensure that the performance parameters (TRP, TIS, and others) are obtained with insignificant loss of accuracy.
On the Impact of Non-Rectangular Two Dimensional Near-field Filter Functions in Planar Near-Field Antenna Measurements
D. Janse van Rensburg, November 2006
In this paper a circular planar near-field scan region is considered as an alternative to the commonly used rectangular boundary. It is shown how the selection of this alternative boundary can reduce test time and also to what extent the alternative truncation boundary will affect far-field accuracy. It is also shown how well known single dimensional filter functions can be applied over a two-dimensional region of test and how these attenuate the truncation effect. The boundary and filter functions are applied to measured data sets, acquisition time reduction is demonstrated and the impact on far-field radiation pattern integrity in assessed.
Cross-Polarization Parameters in the Presence of Drift in Radar Cross Section Measurements
L. Muth, November 2006
We use a rotating dihedral to determine the cross-polarization ratios of radar cross section measurement systems. Even a small amplitude drift can severely degrade the calibration accuracy, since the calibration relies on accurate determination of polarimetric data over a large dynamic range. We show analytically how drift introduces errors into the system parame­ters, and outline an analytic procedure to minimize the in.uence of drift to estimate system parameters with greater accuracy. We show that only very lim­ited information about the drift is needed to provide measured system parameters accurate to second order in the error-free parameters. Higher-order accuracies can be achieved by using more detailed information about the drift. We use simulations to explain and illustrate the analytic development of this theory. We also show that, using cross-polarimetric measurements on a cylinder, we can recover the exact system param­eters. These .ndings show that we can now calibrate polarimetric radar cross section systems without the large uncertainties that can be introduced by drift.
A Partial Rotation Formulation of the Circular Near Field-to-Far Field Transformation (CNFFFT)
S. Rice,I. LaHaie, November 2006
For many years now, General Dynamics has described the development, characterization, and performance of an image-based circular near-field-to-far-field transformation (CNFFFT) for predicting far-field radar cross-section (RCS) from near-field measurements collected on a circular path around the target. In this paper, we consider the CNFFFT algorithm as an azimuthal filtering process and develop a formulation capable of transforming data that is not measured over a full 360º. Such a formulation has applications in measurement scenarios where collection of a complete rotation is not practical. As part of the development, we provide guidelines for the near-field data support required to achieve a desired accuracy in the sub-360º CNFFFT result. Numerical simulations are provided to demonstrate that the results of this partial-rotation formulation are consistent with the full-circle CNFFFT results presented in past papers.
High Accuracy Boresight Referencing Method in a Horizontal Planar Near Field Satellite Antenna Test Range
D. Assa,M. Pinkasy, Y. Sharay, November 2006
In a FF antenna range the DUT mechanical Boresight can be aligned with the Range Boresight simply by using a Boresight scope to transfer the DUT mechanical Boresight to the Range coordinate system. This is not applicable to a PNF Range; hence, another transfer device and different transfer methods are required. This paper describes the development, testing and referencing of an existing PNF range to a reference optical cube that serves as the coordinate system transfer device. The optical measurement system employs an automated total station Theodolite system, incorporating true 3D positioning of the NF probe along defined axes of movement. The data collected is processed to best fit a straight line defining the vector representing the axis. The scanning PNF plane is defined with high accuracy, by a geometrical representation of two (or more) axes in that plane. Thus, the scan plane coordinate system was transferred by auto collimation methods to the reference optical cube. A second optical cube must be placed on the AUT to be used as a reference for its mechanical Boresight. When the AUT is set up for testing, the coordinate systems are transferred from each cube to the other by means of co-collimation using a temporarily positioned Theodolite combination.
Characterization of Compact Antenna Test Ranges from Amplitude-Only Data
A. Capozzoli,A. Liseno, A. Ragni, D. Giuseppa, November 2006
A new algorithm for the amplitude-only characterization of Compact Antenna Test Ranges (CATRs) is presented. The algorithm applies a successful strategy to retrieve the missing phase of the field in the quiet zone. Particular care is devoted to facing the issue of the typically large electrical dimensions of CATRs and to obtaining the necessary accuracy by the use of an “efficient” representation of the radiated field. This is accomplished through a Jacobi-Bessel expansion of the aperture field which allows to keep low the overall number of unknowns and to improve the accuracy and the reliability of the algorithm. The presented numerical analysis, based on realistic CATR simulations by means of GRASP8-SE, shows the feasibility of the algorithm to estimate amplitude and phase of the quiet zone field within an acceptable accuracy.
Optimization of Large Compact Range Reflector Installation and Verification Methodology
j. Aubin,C. Kelly, C. Nadovich, November 2006
A large rolled edge compact range system featuring a 12’H x 16’W quiet zone has been designed, fabricated, installed, and tested in a large aerospace test facility. During the program, a high precision alignment methodology was utilized in conjunction with electromagnetic prediction capability to verify both mechanical and electrical performance while still under trial assembly conditions at the factory. A coherent laser radar (CLR) was utilized to measure the reflector surface on a very fine grid, and the electromagnetic (EM) quiet zone performance was calculated from the raw CLR data using a Physical Optics (PO) model. Despite extremely high surface accuracy of the panels, this evaluation methodology highlighted systematic alignment errors in the reflector system, and guided the process of correcting these errors to achieve a final factory verification assembly for the entire 20’H x 24’W reflector system of better than 0.001” over the quiet zone section of the reflector, and 0.004” rms over the entire reflector. This procedure was also utilized for the on-site installation to achieve alignment of the reflector to an AUT positioning system using the CLR, as the positioning system and chamber were already existing and operational. Thus, it was required to align the reflector to the positioning system, and not the positioning system to the reflector as is usually the case. A unique vertical carousel feed system was also aligned using this procedure. Predicted EM results were again used to finalize alignment on site prior to quiet zone field probe evaluation. This paper summarizes the overall alignment and EM evaluation process, and presents results for the installed compact range reflector system.
Nonlinear Interpolation Technique for Generating 3D Antenna Radiation Patterns
P. Vicharelli,D. Fagen, November 2006
This paper presents a generalized nonlinear interpolation technique for generating 3D antenna radiation patterns from 2D cross sections. The motivation for this work is that most of the patterns provided by antenna manufacturers are only available as vertical and horizontal cross sections. Accurate propagation calculations, however, require gain values at arbitrary orientations, corresponding to points on a 3D gain surface. After reviewing the current methods of generating such a gain surface, we find that linear interpolation algorithms seem the most promising, even though they can often lead to pronounced mathematical artifacts. To overcome these shortcomings a new nonlinear algorithm is proposed. The new approach mitigates, and in most cases eliminates, the artifacts produced by linear interpolation weights. The new method is fast, yields smooth, more realistic surfaces that are consistent with the vertical and horizontal cuts, exhibits diminished mathematical artifacts, and improves the accuracy of propagation calculations of radio frequency signals. Representative examples from the application of the new algorithm to cellular base station antenna patterns will be presented.
Demonstration of an Inverted Steward Platform Target Suspension System using Lightweight, High Tensile Strings
A. Buterbaugh,B. Kent, C. Mentzer, M. Scott, W. Forster, November 2006
This paper presents the design, development and testing of an inverted Stewart platform for suspending and positioning targets during RF antenna and signature testing. Previous string target support systems use multiple string attachment point configurations that do not allow the target roll or pitch to be modified during the azimuthal data collection. This presentation will discuss an in-house development of a scale model target support system that allows for high accuracy simultaneous target roll and pitch positioning. The inverted Stewart platform also offers unique stability of the target by damping out the torsional pendulum motion typically encountered in conventional string support systems. In this paper we will also discuss the advantages and disadvantages of the string support concepts and provide design guidance for a building an inverted Stewart platform support system. If possible, a simple squat calibration standard will be measured to assess the quality and precision of this novel support system.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.