AMTA Paper Archive

 

Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)

 

Search AMTA Paper Archive
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Accuracy
A Novel In-Water Current Probe Measurement Method for Linear Floating Antennas
Paul Mileski,Dr. David Tonn, November 2010
This paper shall discuss a method for measuring the current distribution – in both magnitude and phase - along the length of a floating antenna operating on the surface of the ocean. The method makes use of a novel toroidal current sensing device and balun arrangement, with a vector network analyzer serving as the measurement instrument. The current data obtained using this method can then be used to compute the far-field pattern of the antenna, both at the horizon and overhead, in a manner similar to near-field scanning of aperture antennas. This new method has significant advantages over the conventional far-field method of measurement in terms of accuracy, time, and cost, and can also be used to determine the realized gain of the antenna. Measured and theoretical data shall be presented on example antennas to illustrate the process of measuring the current distribution as well as computation of the far-field pattern.
A Comparison of Methods for Measuring Dielectric Properties of Thin-Film Materials
Joshua Wilson,Brian Rybicki, Kendra Kumley, Mohamed Abouzahra, November 2010
RF measurement of the dielectric properties of very thin films (less than 1/100 wavelength thick) presents a challenge using traditional techniques. Many techniques, such as conventional transmission line-type measurements, are not sensitive enough to measure a single thin sheet of material. Moreover, in the case of waveguide, the method of mechanically fastening the material in place properly is challenging. In this paper, we explore several different strategies for measuring thin films and compare the merits of each. In particular, coaxial line measurements with stacked layers, waveguide measurements, and cavity measurements are discussed. The methods will be compared in terms of their accuracy and sensitivity. Measurements are carried out using the various methods on several low-loss thin-film materials. The measurements are then compared and validated using known reference materials.
Reflectivity Evaluation in NF antenna Measurement Facilities Using Gated Time - Domain Technique
Mark Winebrand,John Aubin, Russell Soerens, November 2010
A widely used time-gating technique can be effectively implemented in near-field (NF) antenna measurements to significantly improve the measurement accuracy. In particular, it can be implemented to reduce or remove the effects of the following measurement errors [1]: -multiple environmental reflections and leakage in outdoor or indoor NF ranges -edge diffraction effects on measurement accuracy of low gain antennas on a ground plane [3] In addition, reflectivity in the range can be precisely localized, separated and quantified by using the time – gating procedure with only one addition (a subtraction operation) added to the standard near-field to far-field (NF – FF) transformation algorithms. In this paper a step by step procedure is described which includes acquisition of near-field data, transformation of the raw near-field data from the frequency to the time domain, definition of the correct time gate, transformation of the gated time domain data back to the frequency domain, and the transformation of the time gated near-field data to the far-field. The time gated results, as already shown in [2], provides for more accurate far-field patterns. In this paper it is shown how the 3D reflectivity/multiple reflections in the measurement chamber or outdoor range can be determined by subtracting the time gated results from the un-gated data. This technique is illustrated through use of several measurement examples. It is demonstrated that the time gated method has a clear physical explanation, and, in contrast with other techniques [4,5] is less consuming (does not require mechanical AUT precise offset installation, additional measurement and processing time) and allows for a better localization and quantization of the sources of unwanted radiation. Therefore, this technique is a straightforward one and is much easier to implement. The main disadvantage cited by critics regarding use of the time gating technique is the narrow frequency bandwidth used in many NF measurements. However, it is shown, and illustrated by the examples, that the technique can be effectively implemented in NF systems with a standard probe bandwidth of 1.5:1 and an AUT having a bandwidth as low as 5% to 10%.
Antenna Pattern Measurement of Space-borne W-band Doppler Radar
Hirotaka Nakatsuka, November 2010
The cloud profiling radar (CPR) for the Earth, clouds, aerosols and radiation explorer (EarthCARE) mission has been jointly developed by JAXA and NICT in Japan. The development of CPR has required several technical challenges from the aspects of hardware designing, manufacturing and testing, because very large antenna reflector of 2.5m diameter with high surface accuracy, high pointing accuracy and high thermal stability had been required to realize the first space-borne W-band Doppler radar. In order to verify the RF design, we have just begun to perform antenna pattern measurement by using a CPR Engineering Model (EM). For this RF testing, we introduced a Near-Field Measurement (NFM) system with necessary capabilities for high accuracy measurement. This paper will present the summary of preliminary test results of the CPR EM antenna and the other technical efforts being taken for the antenna pattern measurement.
Practical Methods to Develop Complete and Accurate Error Budgets for Antenna Measurements
Per Iversen,Kim Rutkowski, November 2010
There are only a handful of commercially available antenna calibration laboratories in the US that are accredited to ISO-17025. Satimo has been operating an accredited laboratory in Atlanta since 2005 and an accurate and documented evaluation of measurement uncertainty has been a key element of the accreditation process. In order to develop the budgets, the parameters affecting the accuracy of the antenna measurement must be well understood. There are several references [2-9] that outline the method for preparing a measurement uncertainty budget, but few encompass the unique attributes associated with antenna measurements. Many of the papers published on the subject of the measurement uncertainty for antenna measurements address the characterization of a specific error term associated with an uncertainty budget, but few describe all of the terms contributing to the error budget nor how to practically determine their values. The intent of this paper is to outline and briefly describe the derivation of the uncertainty terms that contribute to the overall error budget for antenna measurements. Topics that will be discussed include: the uncertainty types, how to obtain or derive the error term for each uncertainty type, the distributions associated with each uncertainty type, the determination of the confidence level and coverage factor, how to combine the error terms as the references listed above are not in agreement on the method for combining the terms.
The application of hardware gating in testing antennas on satellite
huaian zhou,xiaoping zhang, November 2010
Hardware gating has been widely used to eliminate stray signals in the test range for single antenna. While testing the antenna on satellite, several issues should be considered to obtain accurate result. The difference come from several new conditions such as complicated electro-magnetic circumstance, desired stray signals from the satellite and varying of time delay due to antenna rolling. The width of hardware gating pulses and time delay of these two pulses are carefully set to ensure the measurement accuracy. Several methods are presented in this paper. These methods have been used in several test of antenna with satellite, which prove to be very efficient.
High Accuracy Spherical Near-Field Measurements on a Stationary Antenna
Greg Hindman,Hilda Hernandez, Hulean Tyler, November 2010
Most conventional spherical near-field scanning systems require the antenna under test to rotate in one or two axes. This paper will describe a novel rolling arch near-field scanner that transports a microwave probe over a hyper-hemispherical surface in front of the antenna. This unique scanning system allows the antenna to remain stationary and is very useful for cases where motion of the antenna is undesirable, due to its sensitivity to gravitational forces, need for convenient access, or special control lines or cooling equipment. This allows testing of stationary antennas over wide angles with accuracies and speeds that historically were only available from planar near-field systems. The probe is precisely positioned in space by a high precision structure augmented by dynamic motion compensation. The scanner can complete a hyper-hemispherical multi-beam, multi-frequency antenna measurement set of up to eight feet in diameter in less than one hour. The design challenges and chosen techniques for addressing these challenges will be reviewed and summarized in the paper.
A new absorber Layout for a spherical near field scanner
Hans Adel,Rainer Wansch, November 2010
A well designed absorber configuration is a key factor for precise antenna measurements. Unfortunately, even a scanner covered with pyramidal absorbers can cause reflections that could degrade the measurement accuracy. A novel scanner absorber configuration using bent absorbers is presented in this paper. Another problem is that in most cases it is necessary to remove the absorbing material at the scanner to change the antenna under test. The absorbers covering the scanner suffer abrasion caused by the frequent manual movement. For this reason it was also the intention to find a faster and easier solution which also preserves the absorbing material. The new and the old absorber layout were benchmarked using a number of spherical nearfield measurements as well as time domain reflection measurements with a broadband probe antenna. A comparison of the results is also shown in this paper.
IMPROVEMENT IN LOW FREQUENCY TEST ZONE PERFORMANCE IN THE BENEFIELD ANECHOIC FACILITY
Christina Jones, November 2010
Anechoic chambers simulate open air test conditions and are advantageous for testing avionics systems in a secure, quiet electromagnetic environment. The 412th Electronic Warfare Group’s Benefield Anechoic Facility (BAF), located at Edwards AFB, California was designed for testing systems in the radio frequency (RF) range from 500 MHz to 18 GHz. For frequencies below 500 MHz, the installed radar absorbent material (RAM) does not effectively absorb incident RF energy, thereby allowing undesired RF scattering off the chamber’s floor, ceiling, and walls. This leads directly to measurement inaccuracies and uncertainty in test data, which must be quantified for error analysis purposes. In order to meet the desired measurement accuracy goals of antenna pattern and isolation measurement tests below 500 MHz, RF scattering must be mitigated. BAF personnel developed a test methodology based on hardware gating, range tuning and improved RAM setup, to improve chamber measurement performance down to 100 MHz. Characterizing the chamber using this methodology is essential to understanding test zone performance and thus increases confidence in the data. This paper describes the test methodology used and how the test zone was characterized with resulting data.
Planar Near-Field Measurements for Small Antennas
George Cheng,Jan Grzesik, Yong Zhu, November 2010
We introduce a new type of planar near-field measurement technique for testing small antennas which, heretofore, have been traditionally tested via spherical or cylindrical scanning methods. Field acquisition in both these procedures is compromised to a certain extent by the fact that probe movement induces change in relative geometry with respect to, and thus interaction with, the anechoic chamber enclosure. Moreover, obstructing equipment, such as antenna pedestals, may significantly impede, or even reduce the available angular scope of any given scan. Our proposed procedure, by contrast, minimizes both the residual interaction contaminant and the threat of obstruction. We have in mind here a variant, a hybrid version of planar scanning wherein, on the one hand, we limit severely the size of the acquisition rectangle (and thus minimize the contaminating influence of a variable probe/chamber interaction), while, on the other, we really do collect near-field data throughout a complete range of solid angle around any candidate AUT, front, back, above, below, and on both sides. Such completeness is achieved through the mere stratagem of undertaking six independent planar scans with the AUT suitably rotated so as to expose to measurement, one by one, each of the faces of an enclosing virtual box. In the meanwhile, the inevitable AUT pedestal per se remains immobile and removed from any occupancy conflict with the scanned probe. We have accordingly named our new planar near-field data acquisition scheme the “Boxed Near-Field Measurement Procedure.” With subsequent use of our Field Mapping Algorithm (FMA), elsewhere reported, we obtain the entire field exactly, everywhere, both interior and exterior to the surrounding (virtual) box. In particular, we achieve enhanced accuracy in the far-field patterns of primary interest by virtue of the completeness of data acquisition and its relative freedom from spurious contamination. The angular completeness of data acquisition conferred by our procedure extends in principle to antennas of arbitrary size, provided, of course, that due provision is made for the necessary scope of measurement rectangles. The benefits are seen to be especially valuable in the case of narrow-beam antennas, whose back lobe pattern details, usually deemed as inaccessible and hence automatically forfeited during conventional (i.e., utilizing a “one­faced box,” in our new way of thinking) planar near-field testing, are thrust now into full view. Our new, full-enclosure planar acquisition technique as now described has been verified by analytic examples, as well as by hardware measurements, with excellent results evident throughout, as we are about to demonstrate.
Accurate Radiation Pattern Measurements in a Time-Reversal Electromagnetic Chamber
Andrea Cozza, PhD,Abd el-Bassir Abou el-Aileh, November 2009
In a recent paper [1], we have introduced the concept of the time-reversal electromagnetic chamber (TREC), a new facility for creating coherent wave-fronts within a reverberation chamber. This facility, based on the use of time-reversal techniques in a reverberating environment, is here shown to be also a useful tool for the characterization of the field radiated by an antenna under test (AUT). The TREC is proven to be capable of providing real-time measurements, with an accuracy comparable to that of spherical near-field facilities, while using a very limited number of static probe antennas. This performance is made possible by taking advantage of the reflections over the chamber’s walls, in order to gain access to the field radiated along all the directions, with no need to mechanically displace the probes, or to have a full range of electronically switched ones. A 2D numerical validation supports this approach, proving that the proposed procedure allows the retrieval of the free-space radiation pattern of the AUT, with an accuracy below 1 dB over its main lobes.
A Novel Phaseless Spherical Near-Field Antenna Measurement Including the Issue of Robustness
Carsten Schmidt,Thomas Eibert, Yahya Rahmat-Samii, November 2009
The radiation characteristics of antennas can be deter-mined by measuring amplitude and phase data in the ra-diating near-field followed by a transformation to the far-field. Accurate phase measurements especially at high frequencies are very demanding in terms of the required measurement equipment and tolerances. Phaseless mea-surement techniques have been proposed, which often deal with a second set of amplitude only measurement data in order to compensate the lack of phase information. In this paper the concept of phaseless spherical near-field measurements will be addressed by presenting a phaseless near-field transformation algorithm for spherical antenna measurements, working with amplitude only data on two spheres. In particular the measurement of a patch antenna is considered to demonstrate the utility of the technique for low gain antennas. To address the issue of robustness, inaccurate measurement distances as well as spherical rotation angles are considered in order to evaluate the accuracy of the method against probe positioning errors. Furthermore noise contributions are introduced to emu-late measurement inaccuracies in general.
Single Antenna Method for Determining the Gain of Near-Field Waveguide Probes
Russell Soerens, November 2009
Accurate calibration of near-field measurements requires the probe used for the measurement be well characterized. The determination of the absolute gain of rectangular open-ended waveguide probes is difficult due to the broad beamwidth in both the E-plane and H-plane which increase the likelihood of multi-path affecting the accuracy of the measurement. Multi-path may be minimized by reducing the separation distance, but at the price that far-field conditions may no longer apply. A variation of the two matched antenna method is to use a large reflecting plate to form an image of the probe. Use of the entire bandwidth of the probe, and time-gating the results to isolate the signal reflected from the plate allows the gain to be determined. The procedure also allows the determination of the aperture reflection coefficient used by theoretical probe models used for pattern compensation in the near-to-far-field transformation.
HIGH PERFORMANCE BROADBAND FEEDS FOR ECONOMICAL RF TESTING IN COMPACT RANGES
Juergen Hartmann,Christian Hartwanger, Christian Hunscher, Ralf Gehring, Un-Pyo Hong, November 2009
Compact test ranges are worldwide used for real-time measurements of antenna and payload systems. The Compensated Compact Range CCR 75/60 and 120/100 of Astrium represent a standard for measurement of satellite antenna pattern and gain as well as payload parameter due to its extremely outstanding cross-polar behavior and excellent plane wave field quality in the test zone. The plane wave performance in the test zone of a compact test range is mainly dependent on the facilities reflector system and applied edge treatment as well as on the RF performance of the range feed. To provide efficient and economic testing and maintaining the needed measurement accuracy the existing standard set of high performance single linear feeds covering the frequency range from 1 - 40 GHz had been extended to operate simultaneously in dual linear polarization. In addition several customer specific range feeds had been developed and manufactured and validated. More detailed information and achieved test results for the new high performance range feeds will be presented.
An accurate and efficient error predictor tool for CATR measurements
Cecilia Cappellin,Allan Ostergaard, Maurice Paquay, Stig Busk Sørensen, November 2009
An accurate and efficient numerical model is developed to simulate the far field of an antenna under test (AUT) measured in a Compact Antenna Test Range (CATR), on the basis of the known quiet zone field and the theoretical aperture field distribution of the AUT. The comparison with the theoretical far-field pattern of the AUT shows the expected measurement accuracy. The numerical model takes into account the relative movement of the AUT within the quiet zone and is valid for any CATR and AUT of which the quiet zone and aperture field, respectively, are known. The antenna under test is the Validation Standard Antenna (VAST12), especially designed in the past for antenna test ranges validations. Simulated results as well as real measurements data are provided.
A NONREDUNDANT NF–FF TRANSFORMATION WITH SPHERICAL SPIRAL SCANNING USING A FLEXIBLE AUT MODEL
Francesco D'Agostino, November 2009
ABSTRACT In this work, a probe compensated near-field – far-field transformation technique with spherical spiral scanning suitable to deal with elongated antennas is developed by properly applying the unified theory of spiral scans for nonspherical antennas. A very flexible source modelling, formed by a cylinder ended in two half-spheres, is considered as surface enclosing the an­tenna under test. It is so possible to obtain a remark­able reduction of the number of data to be acquired, thus significantly reducing the required measurement time. Some numerical tests, assessing the accuracy of the technique and its stability with respect to random errors affecting the data, are reported.
Accurate radar distance measurements in dispersive circular waveguides considering multimode propagation effects
Eckhard Denicke,Gunnar Armbrecht, Ilona Rolfes, November 2009
This contribution deals with guided radar distance measure­ments in the .eld of industrial tank level control. The aim is to achieve a submillimeter gauging accuracy even when conduc­ting the measurement within thehighlydispersive environment of large and thus overmoded cylindrical waveguides. In this case normally multimode propagation causes a decrease in measurement precision. Therefore, the effects of intermodal dispersion are fundamentally reviewed and based on these re­sults, two different approaches for overcoming the drawbacks of this measurement scenario are derived. On the one hand a prototype of a novel concept for compact mode-preserving waveguide transitions is presented, ef.ciently avoiding the excitation of higher order modes. By applying this concept, free-space optimized signalprocessing algorithms canbe used advantageously. On the other hand, an alternative correlation-based signal processing method is presented. The method is able to exploit the otherwise parasitic dispersion effects to enhance the measurement precision even in constellation with a simple waveguide transition. Finally, the trade-off between the signal processing’s and waveguide transition’s complexity is highlighted and discussed. Measurement results in a frequency range of 8.5 to 10.5 GHz are provided for different kinds of waveguide transitions proving the capability of both approaches.
Numerical Calibration of Standard Gain Horns
Don Bodnar, November 2009
The gain-transfer technique is the most commonly used antenna gain measurement method and involves the comparison of the AUT gain to that of another antenna with known gain. At microwave frequencies and above, special pyramidal horn antennas known as standard-gain horns are universally accepted as the gain standard of choice. A design method and gain curves for these horns were developed by the US Naval Research Laboratory in 1954. This paper examines the ability of modern numerical electromagnetic modeling to predict the gain of these horns and possibly achieve greater accuracy than with the NRL approach. Similar computational electromagnetic modeling is applied to predict the gain and pattern of open-ended waveguide probes which are used in near-field antenna measurements. This approach provides data for probes that are not available in the literature.
Identifying Pointing Errors for the NIST 18 Term Error Technique
Zachary Newbold,Allen Newell, Bruce Williams, November 2009
The NIST 18 Term Error Analysis Technique uses a combination of mathematical analysis, computer simulation and near-field measurements to estimate the uncertainty for near-field range results on a given antenna and frequency range. A subset of these error terms is considered for alignment accuracy of an antenna’s RF main beam. Of the 18 terms, several have no applicable influence on determining the beam pointing or the terms have a minor effect and when an RSS estimate is performed they are rendered inconsequential. The remainder become the dominant terms for identifying the alignment accuracy. There are six terms that can be evaluated to determine the main beam pointing uncertainty of an antenna with respect to dual band performance. Analysis of the near-field measurements is performed to identify the alignment uncertainty of the main beam with respect to a specified mechanical position as well as to the main beam of the second band.
ACCURATE INFINITE GROUNDPLANE ANTENNA MEASUREMENTS
Lars Foged, November 2009
The accurate measurement of the infinite ground plane antenna patterns are needed in different applications as discussed in [1–12]. The comprehensive performance of a general antenna in a complex environment including interaction can be evaluated fast and accurately using ray tracing techniques [1,2]. This approach requires a reliable representation of the local source behaviour either through measurements or simulation. A good source approximation for this method is the infinite ground plane pattern assuming a perfectly conducting plane. The infinite ground plane condition can be achieved easily in simulation using full-wave computational tools but is very difficult to measure on a general antenna due to the finite dimensions of the measurement systems. Different measurements and post processing approaches have been investigated in the past to determine the infinite ground plane pattern of a general antenna. Spherical mode truncation/filtering have been used as means to eliminate edge diffraction from finite ground plane measurements. This method suffers from the dependence on the selection of filtering parameters as discussed in [3]. Time-gating can give some information about the isolated antenna pattern in most directions as discussed in [4-6] but is not completely general and require special equipment and setup for the measurement. Other approaches to eliminate the edge diffraction by special design of the ground plane shape have also been pursued as discussed in [7-10]. This paper introduces a simple formulation to accurately determine the infinite ground plane pattern of any antenna from measurements on a small finite ground plane. The theory of the method is presented and its accuracy and suitability demonstrated with measured examples.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.