AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

State-of-the-art near-field measurement system
K. Haner,G. Masters, November 1995

Planar near-field measurements are the usual choice when testing phased array antennas. NSI recently delivered a large state-of-the-art near­ field measurement system for testing a multi­ beam, solid state phased-array antenna. The critical sidelobe and beam pointing accuracy specifications for the antenna required that special attention be paid to near-field system design. The RF path to the moving probe was implemented using a multiple rotary joint system to minimize phase errors. Additional techniques used to minimize system errors were an optical probe position correction system and a Motion Tracking Interferometer (MTI) for thermal drift correction.

Converting an RCS range for satellite antenna measurements
J. Way, November 1995

The Hughes Space and Communications Company (HSC) has recently undertaken the task to modify a RCS range once operated by Hughes Radar and Communications Systems, to accommodate the testing of Satellite Antennas. This measurement facility's configuration, design and current status will be discussed herein. This RCS range is located in El Segundo, California.

Converting an RCS range for satellite antenna measurements
J. Way, November 1995

The Hughes Space and Communications Company (HSC) has recently undertaken the task to modify a RCS range once operated by Hughes Radar and Communications Systems, to accommodate the testing of Satellite Antennas. This measurement facility's configuration, design and current status will be discussed herein. This RCS range is located in El Segundo, California.

Economic solution to multiple antenna range operation at Katholieke Universiteit Leuven, Belgium, An
F. Dethier,A. Geva, G. Vandenbosch, S. Snir, Z. Gandelman, November 1995

The ESAT-TELEMIC division at Katholieke Universiteit Leuven (KUL) has three antenna ranges: an indoor Far-Field range, an indoor planar Near-Field range and an outdoor Far-Field range. The positioning equipment is of a variety of manufacturers. The division launched an effort to modernize the range complex and add automatic measurement capabilities, while still retaining control of all three ranges from one control console and using one positioner controller, one angle readout and a single receiver to save costs. The system upgrade included some electrical refurbish­ ment of the positioning equipment and the replacement of all the old control and data recording equipment with Orbit Positioner Controller/Programmer, Power Control Unit and combined Near-Field and Far-Field software. Control of all three sites is achieved using a special Orbit Junction Box. With the new configuration all three ranges can be operated in fully automatic mode, one range at a time. The software package controls both Near-Field and Far­ Field measurements using compatible data formats and human interfaces.

Economic solution to multiple antenna range operation at Katholieke Universiteit Leuven, Belgium, An
F. Dethier,A. Geva, G. Vandenbosch, S. Snir, Z. Gandelman, November 1995

The ESAT-TELEMIC division at Katholieke Universiteit Leuven (KUL) has three antenna ranges: an indoor Far-Field range, an indoor planar Near-Field range and an outdoor Far-Field range. The positioning equipment is of a variety of manufacturers. The division launched an effort to modernize the range complex and add automatic measurement capabilities, while still retaining control of all three ranges from one control console and using one positioner controller, one angle readout and a single receiver to save costs. The system upgrade included some electrical refurbish­ ment of the positioning equipment and the replacement of all the old control and data recording equipment with Orbit Positioner Controller/Programmer, Power Control Unit and combined Near-Field and Far-Field software. Control of all three sites is achieved using a special Orbit Junction Box. With the new configuration all three ranges can be operated in fully automatic mode, one range at a time. The software package controls both Near-Field and Far­ Field measurements using compatible data formats and human interfaces.

Considerations in upgrading to bigger and better near-field chambers
J. Friedel,D.L. Wilkerson, R. Keyser, November 1995

From prototyping to consulting, the McClellan Near-Field Team has worked on the installation of four near-field( NF) facilities. Currently this group operates and maintains two planar near-field test systems. This paper will discuss considerations McClellan used in building or specifying near-field facilities of increasing complexity. NF software will be examined for functional growth and graphical improvement. RF system improvements, over four systems, will be examined for frequency range, dynamic range and cable loss. The evolution of the antenna­ under-test (AUT) stand will be examined for weight, and precision factors. Changes in alignment procedures will also be discussed. Additionally, the NF construction issues of anechoic material and safety features will be examined for improvement. Finally, changes will be discussed in the NF operation and maintenance procedures over the four McClellan ranges.

Considerations in upgrading to bigger and better near-field chambers
J. Friedel,D.L. Wilkerson, R. Keyser, November 1995

From prototyping to consulting, the McClellan Near-Field Team has worked on the installation of four near-field( NF) facilities. Currently this group operates and maintains two planar near-field test systems. This paper will discuss considerations McClellan used in building or specifying near-field facilities of increasing complexity. NF software will be examined for functional growth and graphical improvement. RF system improvements, over four systems, will be examined for frequency range, dynamic range and cable loss. The evolution of the antenna­ under-test (AUT) stand will be examined for weight, and precision factors. Changes in alignment procedures will also be discussed. Additionally, the NF construction issues of anechoic material and safety features will be examined for improvement. Finally, changes will be discussed in the NF operation and maintenance procedures over the four McClellan ranges.

Discrete implementation of an image-based algorithm for extrapolation of radar cross-section (RCS) from near-field measurements
I. LaHaie,E. LeBaron, November 1995

ERIM is currently investigating several near-field to far-field transfonnations (NFFFfs) for predicting the far-field RCS of targets from monostatic near-field measurements. Each of the techniques uses approximate­ tions and/or supporting information to overcome the need for the bistatic near-field data which is required to rigorously transfonn a target's scattered field from the near zone to the far zone. Our focus has been on spheri­ cal near-field scanning, since this type of collection geometry is most compatible with existing RCS ranges. One particular NFFFT is based on the reflectivity approximation commonly used in ISAR imaging to model the target scattering. This image-based NFFFT is the most computationally efficient technique under con­ sideration, because, despite its theoretical underpinnings, it does not explicitly require image fonnation as part of its implementation. This paper presents an efficient discrete implementation of the image-based NFFFT, along with numerically-simulated examples of its perfonnance. The advantages and limitations of the technique will be discussed. A simplified version which applies to high aspect ratio (length-to-height) targets and requires only a single great circle (waterline) data in the near field is also summarized.

Discrete implementation of an image-based algorithm for extrapolation of radar cross-section (RCS) from near-field measurements
I. LaHaie,E. LeBaron, November 1995

ERIM is currently investigating several near-field to far-field transfonnations (NFFFfs) for predicting the far-field RCS of targets from monostatic near-field measurements. Each of the techniques uses approximate­ tions and/or supporting information to overcome the need for the bistatic near-field data which is required to rigorously transfonn a target's scattered field from the near zone to the far zone. Our focus has been on spheri­ cal near-field scanning, since this type of collection geometry is most compatible with existing RCS ranges. One particular NFFFT is based on the reflectivity approximation commonly used in ISAR imaging to model the target scattering. This image-based NFFFT is the most computationally efficient technique under con­ sideration, because, despite its theoretical underpinnings, it does not explicitly require image fonnation as part of its implementation. This paper presents an efficient discrete implementation of the image-based NFFFT, along with numerically-simulated examples of its perfonnance. The advantages and limitations of the technique will be discussed. A simplified version which applies to high aspect ratio (length-to-height) targets and requires only a single great circle (waterline) data in the near field is also summarized.

Near-field to far-field transformation of RCS measurements
D. Mensa,K. Vaccaro, November 1995

The RCS of extended objects measured in the near field is subject to errors induced by the spherical nature of the incident and scattered wavefields. A number of techniques have been applied to estimate far-field responses from results of monostatic near-field measurements. While the results indicate successful transformations for linear scatterers, the lack of a sound theoretical basis brings into question the appli­ cability to general objects. The paper explores the theoretical basis of the far-field transformation of RCS data and the consequence of the limited data obtained from monostatic measure­ments. The limitations of approaches reported to date [1-4] are explored from conceptual and physical con­ siderations with the goal of establishing reasonable expectations for practical methods. Examples using simulated and measured near-field data are presented to illustrate successes and failures of the algorithms in transforming results to far-field RCS.

Near-field to far-field transformation of RCS measurements
D. Mensa,K. Vaccaro, November 1995

The RCS of extended objects measured in the near field is subject to errors induced by the spherical nature of the incident and scattered wavefields. A number of techniques have been applied to estimate far-field responses from results of monostatic near-field measurements. While the results indicate successful transformations for linear scatterers, the lack of a sound theoretical basis brings into question the appli­ cability to general objects. The paper explores the theoretical basis of the far-field transformation of RCS data and the consequence of the limited data obtained from monostatic measure­ments. The limitations of approaches reported to date [1-4] are explored from conceptual and physical con­ siderations with the goal of establishing reasonable expectations for practical methods. Examples using simulated and measured near-field data are presented to illustrate successes and failures of the algorithms in transforming results to far-field RCS.

Near-field/far-field transformation
E. Lebreton,J.R. Levrel, November 1995

RCS data measured under near-field conditions is corrected to the far-field. The algorithm uses the HUYGEN's principle approach. The processing technique is describes and validates using anechoic chamber data and simulations taken on flat plate target at a distance from the radar R << 2D2/A, where D is the target cross range extend and A the wavelength. Good agreement with the theoretically predicted far-field RCS patterns is obtained.

Near-field/far-field transformation
E. Lebreton,J.R. Levrel, November 1995

RCS data measured under near-field conditions is corrected to the far-field. The algorithm uses the HUYGEN's principle approach. The processing technique is describes and validates using anechoic chamber data and simulations taken on flat plate target at a distance from the radar R << 2D2/A, where D is the target cross range extend and A the wavelength. Good agreement with the theoretically predicted far-field RCS patterns is obtained.

Calibration of bistatic RCS measurements
N.T. Alexander,M.T. Tuley, N.C. Currie, November 1995

Calibration of monostatic radar cross section (RCS) measurements is a well-defined process that has been optimized through many years of theoretical investigation and experimental trial and error. On the other hand, calibration of bistatic RCS measurements is potentially a very difficult problem; the range of bistatic angles over which calibration must be achieved is essentially unlimited and devising a calibration target that will provide a calculable scattering solution over the required range of bistatic angles is difficult, particularly for cross-polarized measurements. GTRI has developed a solution for amplitude calibration of both co-polarized and cross-polarized bistatic RCS, as well as a bistatic phase-calibration procedure for coherent systems.

Calibration of bistatic RCS measurements
N.T. Alexander,M.T. Tuley, N.C. Currie, November 1995

Calibration of monostatic radar cross section (RCS) measurements is a well-defined process that has been optimized through many years of theoretical investigation and experimental trial and error. On the other hand, calibration of bistatic RCS measurements is potentially a very difficult problem; the range of bistatic angles over which calibration must be achieved is essentially unlimited and devising a calibration target that will provide a calculable scattering solution over the required range of bistatic angles is difficult, particularly for cross-polarized measurements. GTRI has developed a solution for amplitude calibration of both co-polarized and cross-polarized bistatic RCS, as well as a bistatic phase-calibration procedure for coherent systems.

Interferometric techniques for discriminating multipath in ground to ground radar diagnostics with minimal constraints on collection geometry
L. Cech,C. Clarke, G. Fliss, J. Steinbacher, T. Coveyou, T. Kornbau, W. Nagy, November 1995

Due to inherent cost, safety and logistical advan­ tages over dynamic measurements, Ground-to-Ground (G2G, aircraft and radar on tarmac) diagnostic radar measurements may be the preferred method of assessing aircraft RCS for signature maintenance. However, some challenging complications can occur when interpreting SAR imagery from these systems. For example, the effect of ground induced multi-path often results in the measurement of a significantly different image based RCS than would have been obtained by a comparable Ground-to-Air (G2A) or Air-to-Air (A2A) system. Although conventional 2-D SAR images are useful in determining the physical source (down-range/cross­ range) of scatterers, it is difficult at best to deduce whether an image pixel is a result of direct (desired) or ground induced multi-path (undesired) scattering. ERIM and MRC recently completed an experiment testing the utility of collecting and processing interfero­ metric (2-antenna) SAR radar data. This effort produced not only high resolution SAR imagery, but also a com­ panion data set, derived from interferometric phase, which helps to isolate the source (direct or multi-path) of all scattering within the SAR image. Additionally, the data set gives a measure of the physical height of direct scatterers on the target. This paper outlines the experiment performed on a RCS enhanced F-4 aircraft using a van mounted radar. Conventional high resolution imagery (down-range/ cross-range/intensity) will be shown along with down­ range/height/intensity and cross-range/height/intensity images. The paper will also describe the processing pro­ cedure and present analysis on the interferometric results. The unique motion compensation processing technique combining prominent point and motion mea­ surement instrumentation data, eliminates the need for a tightly controlled collection path (e.g. bulky rail sys­ tems). This allows data to be collected with the van driven somewhat arbitrarily around the target with side mounted antennas taking measurements at desired aspects.

Interferometric techniques for discriminating multipath in ground to ground radar diagnostics with minimal constraints on collection geometry
L. Cech,C. Clarke, G. Fliss, J. Steinbacher, T. Coveyou, T. Kornbau, W. Nagy, November 1995

Due to inherent cost, safety and logistical advan­ tages over dynamic measurements, Ground-to-Ground (G2G, aircraft and radar on tarmac) diagnostic radar measurements may be the preferred method of assessing aircraft RCS for signature maintenance. However, some challenging complications can occur when interpreting SAR imagery from these systems. For example, the effect of ground induced multi-path often results in the measurement of a significantly different image based RCS than would have been obtained by a comparable Ground-to-Air (G2A) or Air-to-Air (A2A) system. Although conventional 2-D SAR images are useful in determining the physical source (down-range/cross­ range) of scatterers, it is difficult at best to deduce whether an image pixel is a result of direct (desired) or ground induced multi-path (undesired) scattering. ERIM and MRC recently completed an experiment testing the utility of collecting and processing interfero­ metric (2-antenna) SAR radar data. This effort produced not only high resolution SAR imagery, but also a com­ panion data set, derived from interferometric phase, which helps to isolate the source (direct or multi-path) of all scattering within the SAR image. Additionally, the data set gives a measure of the physical height of direct scatterers on the target. This paper outlines the experiment performed on a RCS enhanced F-4 aircraft using a van mounted radar. Conventional high resolution imagery (down-range/ cross-range/intensity) will be shown along with down­ range/height/intensity and cross-range/height/intensity images. The paper will also describe the processing pro­ cedure and present analysis on the interferometric results. The unique motion compensation processing technique combining prominent point and motion mea­ surement instrumentation data, eliminates the need for a tightly controlled collection path (e.g. bulky rail sys­ tems). This allows data to be collected with the van driven somewhat arbitrarily around the target with side mounted antennas taking measurements at desired aspects.

Numerical methods for measurement error mitigation
J. Stach, November 1995

For the past six years, ERIM has been studying RCS measurement error sources and processing methods by which these errors can be reduced. Typical errors that can be mitigated by processing techniques include near-field effects, multipath sources, and target support interactions. In this paper we briefly discuss image editing and spec­ tral decomposition methods which can be applied to error mitigation when the target sjze and bandwidth are suffi­ cient to resolve scattering centers. More details on these methods will be presented in other papers at this confer­ ence. We then describe in detail the netwcrk model approach which is best suited to applications where the target size is electrically small and the bandwidth is nar­ row. We show that the network model is a logical extension of the other techniques and discuss its application to error mitigation.

Numerical methods for measurement error mitigation
J. Stach, November 1995

For the past six years, ERIM has been studying RCS measurement error sources and processing methods by which these errors can be reduced. Typical errors that can be mitigated by processing techniques include near-field effects, multipath sources, and target support interactions. In this paper we briefly discuss image editing and spec­ tral decomposition methods which can be applied to error mitigation when the target sjze and bandwidth are suffi­ cient to resolve scattering centers. More details on these methods will be presented in other papers at this confer­ ence. We then describe in detail the netwcrk model approach which is best suited to applications where the target size is electrically small and the bandwidth is nar­ row. We show that the network model is a logical extension of the other techniques and discuss its application to error mitigation.

Method to quantify target-support interaction terms, A
J. Matis, November 1995

Target support interaction terms often drive Radar Cross Section Measurement limitations. These limitations are when mask needed information, or render interpretation difficult. Although support improvement is desirable and studied, there is a fundamental problem. Perhaps we can create a support that is 10 dB better than existing supports. The technology producing that improvement will usually be applicable to targets. Result: The same ratios recur. Modern instrumentation Radar possesses many acquisition agility's. Processing power currently available permits handling huge volumes of data. This paper studies evaluation and/or elimination of interaction terms using these agility's. Interactions within the test article are often significant. Controlled of this method would select and retain, or remove the terms.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30