AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

A 160 GHz polarimetric compact range for scale model RCS measurements
M.J. Coulombe (University of Massachusetts Lowell),J. Neilson (U.S. Army National Ground Intelligence Center), J. Waldman (University of Massachusetts Lowell), S. Carter (U.S. Army National Ground Intelligence Center), T. Horgan (University of Massachusetts Lowell), W. Nixon (U.S. Army National Ground Intelligence Center), November 1996

A fully-polarimetric compact range operating at 160 GHz has been developed for obtaining X-band RCS measurements on 1:16th scale model targets. The transceiver consists of a fast switching, stepped, CW, X-band synthesizer driving dual X16 transmit multiplier chains and dual X16 local oscillator multiplier chains. The system alternately transmits horizontal (H) and vertical (V) radiation while simultaneously receiving H and V. Software range-gating is used to reject unwanted spurious responses in the compact range. A flat disk and a rotating circular dihedral are used for polarimetric as well as RCS calibration. Cross-pol rejection ratios of better than 40 dB are routinely achieved. The compact range reflector consists of a 60” diameter, CNC machined aluminum mirror fed from the side to produce a clean 20” quiet zone. A description of this 160 GHz compact range along with measurement examples are presented in this paper.

Development of a folded compact range and its application in performing coherent change detection and interferometric ISAR measurements
K.W. Sorensen (Sandia National Laboratories),D.H. Zittel (Sandia National Laboratories), J.H. Littlejohn (Geo-Centers, Inc.), November 1996

A folded compact range configuration has been developed at the Sandia National Laboratories’ compact range antenna and radar-cross-section measurement facility as a means of performing indoor, environmentally-controlled, far-field simulations of synthetic aperture radar (SAR) measurements of distributed target samples (i.e. gravel, sand, etc. ). In particular, the folded compact range configuration has been used to perform both highly sensitive coherent change detection (CCD) measurements and interferometric inverse-synthetic-aperture-radar (IFISAR) measurements, which, in addition to the two-dimensional spatial resolution afforded by typical ISAR processing, provides resolution of the relative height of targets with accuracies on the order of a wavelength. This paper describes the development of the folded compact range, as well as the coherent change detection and interferometric measurements that have been made with the system. The measurements have been very successful, and have demonstrated not only the viability of the folded compact range concept in simulating SAR CCD and interferometric SAR (IFSAR) measurements, but also its usefulness as a tool in the research and development of SAR CCD and IFSAR image generation and measurement methodologies.

Electronic warfare testing at the Benefield Anechoic Facility
E.F. Ali (Air Force Flight Test Center), November 1996

This paper discusses the test capabilities of the Benefield Anechoic Facility (BAF) and its mission to support avionics and electronic warfare (EW) test and evaluation (T&E) of current and future generation manned and unmanned aerospace vehicles. Testing at the BAF can provide the dense, complex, and realistic signal environment necessary to evaluate integrated systems/subsystems to meet both Development Test and Evaluation (DT&E) objectives. The BAF, located at the Air Force Flight Test Center (AFFTC), Edwards Air Force Base, California, USA, is part of the Avionics Test and Integration Complex (ATIC). The BAF provides a quiet, secure, and controlled electromagnetic environment to test installed/integrated systems, their associated weapons, avionics and EW systems. This testing is accomplished within a very large anechoic chamber, providing a realistic free-space and controllable radio frequency (RF) environment.

HSC's new near-field measurement facility
J. Way (Hughes Space & Communications Co.), November 1996

The Hughes Space and Communications Company (HSC) is in the process of completing the construction, installation and validation of two large horizontal near-field antenna measurement ranges. These new measurement systems are located in the existing HSC satellite factory building. These ranges will be used to measure various types of directive satellite antennas both at a unit level and at spacecraft level. The facility will accommodate mechanical integration of the test articles as well. This facility is the result of Hughes committing the time and money to create a state of the art antenna measurement facility that will be highly efficient and accurate. A detailed description of this facility’s configuration, design and current status will be discussed herein.

Radar cross section range characterization
L.A. Muth (National Institute of Standards and Technology),B. Kent (Wright-Patterson Air Force Base), J. Tuttle (Naval Air Warfare Center) R.C. Wittmann (National Institute of Standards and Technology), November 1996

Radar cross section (RCS) range characterization and certification are essential to improve the quality and accuracy of RCS measurements by establishing consistent standards and practices throughout the RCS industry. Comprehensive characterization and certification programs (to be recommended as standards) are being developed at the National Institute of Standards and Technology (NIST) together with the Government Radar Cross Section Measurement Working Group (RCSMWG). We discuss in detail the long term technical program and the well-defined technical criteria intended to ensure RCS measurement integrity. The determination of significant sources of errors, and a quantitative assessment of their impact on measurement uncertainty is emphasized. We briefly describe ongoing technical work and present some results in the areas of system integrity checks, dynamic and static sphere calibrations, noise and clutter reduction in polarimetric calibrations, quiet-zone evaluation and overall uncertainty analysis of RCS measurement systems.

Radar target scatter (RATSCAT) division low frequency range characterization
M. Husar (Air Force Development Test Center),F. Sokolowski (Johnson Controls World Services, Inc.), November 1996

The RATSCAT Radar Cross Section (RCS) measurement facility at Holloman AFB, NM is working to satisfy DoD and program office desires for certifies RCS data. The first step is to characterize the Low Frequency portion of the RATSCAT Mainsite Integrated Radar Measurement System (IRMS). This step is critical to identifying error budgets, background levels, and calibration procedures to support various test programs with certified data. This paper addresses characterization results in the 150 – 250 MHz frequency range. System noise, clutter, background and generic target measurements are presented and discussed. The use of background subtraction on an outdoor range is reviewed and results are presented. Computer predictions of generic targets are used to help determine measurement accuracy.

Accuracy of RCS measurements
S. Mishra (Canadian Space Agency),C.W. Trueman (Concordia University), November 1996

Some precautions necessary for accurate RCS measurements using a short model range are discussed. Sources of error in these measurements such as non ideal range geometry, misalignment of the target and inappropriate time domain gating are discussed. A simple technique to estimate possible errors in RCS measurements due to factors such as bistatic angle due to finite separation of source and receive horns and finite length of the measurement range, is presented. The range of RCS values that can be measured within defined error bonds is identified.

A Top-down versus bottom-up RCS range certification approach
W.D. Burnside (The Ohio State University ElectroScience Laboratory),E. Walton (The Ohio State University ElectroScience Laboratory), I.J. Gupta (The Ohio State University ElectroScience Laboratory), J.D. Young (The Ohio State University ElectroScience Laboratory), November 1996

A new approach for certification of RCS ranges is discussed. This new approach is based on evaluating the major expected sources of errors in a RCS range rather than evaluating each and every error source and then defining the error bar for a given RCS measurement. The new approach is, therefore, called a top-down approach. Based on our experience with many indoor RCS ranges, we can say that the main sources of errors in RCS measurements are range related. (stray signals, chamber drift, target/mount interactions etc.) One should, therefore, critically evaluate these errors such that the performance level of the range can be verified. A test approach is defined to characterize the range related errors. Various tests are based on the RCS measurement of specific targets, and thus, can be easily performed using standard RCS measurement procedure. This approach will provide range operators with the needed information to justify the use of their range to measure RCS of a given target. Also, one can spend more effort fixing the error sources which lead to large RCS measurement errors.

Acceptance of the Sanders Merrimack 23 compact range for RCS measurements
E.A. Urbanik (Sanders, A Lockheed Martin Company),G. Boilard (Sanders, A Lockheed Martin Company), November 1996

In 1993, we presented the newly completed compact range and tapered chamber facility [1]. As part of this presentation, the issue of “range certification” was presented. This paper will discuss the work that we have done with the compact range for radar cross section (RCS) measurement acceptance. For customer acceptance, we had to “prove” that the compact range made acceptable measurements for the fixtures and apertures involved. Schedule and funding did not permit the full exploitation of the uncertainty analysis of the chambers, not was it felt to be necessary [2]. The determination of our range capabilities and accuracy was based on system parameters and target measurements. Targets that were calculable either in closed form solutions (spheres) or by numerical methods (cylinders and rods) were used. Finally, range to range comparisons with the Rye Canyon Facility [3] of a standard target was used. The range to range comparison proved especially difficult due to customer exceptions, feed differences, and target mounting. This paper will discuss the “success” criteria applied, the procedures used, and the results. The paper will close with a discuss of RCS standards and the range certification process.

Region-of-interest radar imagery
A. Moghaddar (Aeroflex-Lintex Corp.), November 1996

It is shown that for dispersive scatterers, one cannot relate the intensity of the spatial response in the radar image to a particular location on the scatterer. For such cases, an imagery capable of characterizing both the spatial (dominant scattering centers) as well as spectral (resonant modes) wave objects. In the new image reconstruction, first a focusing point is selected for the image. The section of the image close to this focusing point provides good spatial resolution. As one moves away from the focusing point, the utilized bandwidth is reduced to provide good spectral resolution. The capabilities of the proposed imagery are illustrated using several examples.

Atomic decompositions of radar signals
N.S. Subotic,D.G. Pandelis, J. Burns, November 1996

In this paper we present a recently-developed adaptive method for decomposing radar signals into a wide range of physically meaningful mechanisms. The signal decomposition we will pursue is based on a set of functions referred to as “atoms” in the signal processing literature. These atoms can be derived from disparate mechanisms such as scattering center responses given by the Geometric Theory of Diffraction (GTD), which are localized in range, and resonance phenomena, which are localized in frequency. The atoms populate a “dictionary” of waveforms which are used to decompose radar signals. Traditional Fourier methods have restricted the class of atoms solely to harmonic exponentials. In this paper, we consider a number of signal decomposition methods. We chose a method based on the Basis Pursuit procedure of Chen and Donoho [1],which uses an L1 norm as opposed to a least squares approach to search the dictionary. We chose this technique because of its sparsity of representation and convergence properties. We will show results of this technique applied to numerically simulated data and show that disparate scattering mechanisms can be isolated and identified in the radar data.

Enhanced image editing by peak region segmentation
J. Stach (ERIM),E. LeBaron (ERIM), November 1996

For the past seven years, ERIM has been studying RCS measurement error sources and processing methods by which these errors can be reduced. Image editing is an extension of range-gating where scattering measurements are improved by removing undesired scattering phenomena in the range-crossrange image domain. Conventional image editing methods rely on a user-supplied polygon to segment an image into desired and undesired scattering regions. However, the polygon method suffers from variability due to user and display characteristics, provides little hope for automation, and cannot be easily extended beyond two dimensions. An alterative approach based on peak region segmentation minimizes or eliminates these limitations and adds an element of optimally that can also improve the performance of image editing techniques. In this paper, we will discuss the application of peak region segmentation to the image editing problem and show examples that demonstrate some of the advantages of this approach.

Tracking phantom scatterers in ISAR imagery
E.F. Knott (Tomorrow’s Research), November 1996

A display scheme is explored that may be of diagnostic value in interpreting scatterer interactions in ISAR imagery. It relies on the non-coherent sum of several images, and thus traces the motion of all scatterers across the range-crossrange plane. The scheme is demonstrated by means of a very simple geometric optics model involving only two scatterers.

Parametric signal history editing techniques for removal of additive support contamination in narrowband RCS measurements
J. Burns (Environmental Institute of Michigan),S.R. DeGraaf (Electronic Sensors and Systems Division), November 1996

ERIM has developed techniques, based on parametric spectral estimators, for removing additive target support contamination from narrowband RCS measurements [1]. These techniques allow target and support returns to be extracted from frequency sweep data with much greater accuracy and resolution than that afforded by conventional Fourier techniques. These algorithms have recently been enhanced to incorporate scattering mechanism frequency dependence in the underlying signal model. Specifically, damped exponential and power-of-frequency sweep data with much greater accuracy and resolution than that afforded by conventional Fourier techniques. These algorithms have recently been enhanced to incorporate scattering mechanism frequency dependence in the underlying signal model. Specifically, damped exponential and power-of-frequency signal models have been used. The modification substantially improves algorithm performance in measurement situations where there is small absolute bandwidth, but relatively large fractional bandwidth, which can lead to appreciable variation in scattering mechanism amplitude. The paper will demonstrate the technique’s ability to remove target support contamination using numerical simulations and compact range measurements of canonical targets mounted on pylon supports. It will be shown that the algorithm can remove the additive pylon contamination even for situations where the pylon return dominates the target return and cannot be resolved from the target in conventional Fourier range profiles.

Compact range antenna measurement error model
M. Boumans (Dornier Satellitensysteme GmbH), November 1996

A compact range antenna measurement error model is presented which shows that the ripple in the quiet zone can only be caused by stray radiation from the edges of the reflector, presuming a perfectly shaped (serrated) reflector. This is proven by defining an equivalent system which gives significant intuitive insight in the behavior of a compact range. For a simple example this model is shown to be consistent with PO. The model intuitively explans many antenna measurement accuracy observations made in a compact range without the need for extensive knowledge of antenna or diffraction theory. These observations include the relation between quiet zone ripple characteristics and antenna measurement accuracy, especially for boresight, narrow angle and wide angle measurements. It also explains why new correction techniques like AAPC work so well in spite of their presumable simplified modeling.

Evaluation of a CPTR using an RCS flat plate method
M.A.J. van de Griendt (Eindhoven University of Technology),V.J. Vokurka (Eindhoven University of Technology) J. Reddy (European Space Agency) J. Lemanczyk (European Space Agency), November 1996

Compact Payload Test Ranges (CPTR) for test zones of 5 meters or larger can be used for both payload and advanced antenna testing. In both cases accurate calibration, including amplitude and phase characteristics across the test zone, is required. Accurate data analysis is needed in order to establish corresponding error budgets. In addition, boresight determination will be required in both measurement types for most applications. Since it may be difficult or even impossible to scan the test zone field using a (planar) scanner, application of a large reference target (a rectangular or circular flat plate) can be seen as in interesting alternative. RCS measurements are then performed and test-zone field characteristics are determined in both amplitude and phase. Time- and spectral domain techniques can provide valuable information as to the location of possible disturbances. The evaluations is complemented with the measurement of a VAlidation STandard (VAST) antenna in combinations with an advanced APC technique. These techniques have been demonstrated at the CPTR at ESTEC, Noordwijk, the Netherlands. Results and practical considerations are presented in this paper.

The Use of pattern comparison methods for satellite antenna testing
J. van Norel (Dornier Satellitensysteme GmbH),J. Habersack (Dornier Satellitensysteme GmbH), M. Boumans (Dornier Satellitensysteme GmbH), November 1996

Nowadays, the standard facility for accurate satellite antenna testing is the Compensated Compact Range (CCR). In order to increase measurement accuracy several techniques can be applied, which are based on antenna pattern comparison. The theory of these techniques together with experimental results have been described in several papers in the past [1][2][3]. This paper presents how pattern comparison techniques are applied for space programs and is another step to official qualification of the Advanced Antenna Pattern Comparison (AAPC) method at Dornier Satellitensysteme (DSS).

Accurate determination of main beam position and beamwidth from near field measurements
M.H. Paquay (TNO Physics and Electronics Laboratory), November 1996

For narrow beam antennas or track antennas some parameters like main beam or null position and 3 dB beamwidth need to be determined with an accuracy of less than a mill or mrad. With Near Field measurements, the Far Field is normally calculated by FFT-processing. This does, however, not provide the required accuracy. Nevertheless, the measured Near Field data contains information about any Far Field point. An iterative approach is presented to determine the Far Field antenna characteristics with high accuracy.

System design and measurement procedures in spherical near field antenna testing
M. Dich (Technical University of Demark),H.E. Gram (Technical University of Demark), November 1996

A new measurement control and data preprocessing system has been implemented at the TUD-ESA Spherical Near Field Antenna Test Facility. This facility is located at the Technical University of Denmark (TD) and operated in cooperation with European Space Agency (ESA). The measurement control system as well as a flexible information system is described. The data collected during measurements are passed through a preprocessor before the data are stored on disc. By taking advantage of the band-limited nature of the measured near field the preprocessor is able to detect RF leakages and to correct for the non-ideal sampling that is caused by non-zero integration time of the receiver.

An Environmental reflection filtering strategy for plane-polar near-field antenna measurement
O.M. Bucci (Universita di Napoli “Federico II”),G. D'Elia (Universitá di Napoli “Federico II”), M.D. Migliore (Universitá di Napoli “Federico II”), November 1996

A new strategy reducing the effect of the environmental noise in the evaluation of the radiated far field by means of a near-field far-field transformation technique is presented. A plane-polar scanning system is considered although the approach holds for general scanning geometries. Numerical and experimental results confirm the effectiveness of proposed the technique.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30