AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Broadband Radar Cross Section Predictions and Measurements for a Canonical 3-Meter Ogive Body of Revolution
B.M. Kent (Air Force Research Laboratory),K.C. Hill (Air Force Research Laboratory), November 2001
In previous AMTA Symposia, the Air Force Research Laboratory reported on a successful effort to fabricate, measure, and predict the precise radar cross section (RCS) for various cylindrical calibration targets [1]. In this paper, we apply what we have learned about calibration cylinders to the study of a 3.048 meter ogive body of revolution. Recall that an ogive is simply the arc of a circle spun on its axis. The radar signature of this shape is extremely small in the direction of the "point", even at low frequencies. A few years ago, AFRL had the subject ogive built for an RCS inter-range comparison between AFRL and the NRTF bistatic RCS measurement system [2]. In this paper, we utilize this ogive body to assess both the quality and accuracy of VHF RCS measurements and predictions performed using multiple calculation schemes. In the end, reconciling the ogive measurements and predictions led us to reassess how composite objects are "conductively coated" to simulate a perfect electric conductor. This insight resulted in refinements in the process for measuring and predicting the ogive at low frequencies where electrical size and electromagnetic skin depth considerations are important.
Compact RCS Imaging System
S.E. Gordon (Sensor Concepts Inc.),J.H. Ashton (Sensor Concepts Inc.), November 2001
The implementation of low observable (LO) materials and the fielding of aircraft with controlled signatures creates a new degree of difficulty for maintaining, executing prompt accurate inspections and achieving meaningful evaluations. To address this problem, Sensor Concepts, Inc (SCI) has prototyped a new radar system, (the SCI-Xe) to provide a test bed for a lighter, smaller RCS measurement and imaging system. The hardware consists of a suitcase containing RF hardware, computer and display and a hand-held or rail-mounted unit containing two X/Ku band antennas. In the rail-mounted application, imaging is followed by registration and image differencing, which allows an operator reproduce a baseline measurement geometry and evaluate RCS changes. The hand-held application forms a synthetic aperture by moving the antennas by hand. This can be used to quickly investigate an object under test.
On the Use of Wavenumber Migration for Linear SAR Image Formation and Near-Field to Far-Field RCS Transformation
B. Fischer (AARDC),I.J. LaHaie (AARDC), J. Fliss (AARDC), November 2001
This paper presents a first-principles algorithm for estimating a target’s far-field radar cross section (RCS) and/or far-field image from extreme near-field linear (1- D) or planar (2-D) SAR measurements, such as those collected for flight-line diagnostics of aircraft signatures. Wavenumber migration (WM) is an approach that was first developed for the problem of geophysical imaging and was later applied to airborne SAR imagery [1], where it is often referred to as the “Range Migration Algorithm (RMA)”[2]. It is based on rigorous inversion of the integral equation used to model SAR/ISAR imagery, and is closely related to processing techniques for near-field antenna measurements. A derivation of WM and examples of approximate farfield RCS and image reconstructions are presented for the one-dimensional (1D) case, along with a discussion of the angular extent over which the far-field estimates are valid as a function of target size, measurement standoff distance, and near-field aperture dimensions.
Uncertainty Analysis on the RCS Measurements from Calibration Objects
P.S.P. Wei (The Boeing Company),A.W. Reed (The Boeing Company), C.N. Ericksen (The Boeing Company), November 2001
In order to better estimate the uncertainties in measured RCS for the Boeing 9-77 Compact Range, we study the responses from three high-quality objects, i.e., two ultraspheres of 14” and 8” in dia., plus the 4.5" squat-cylinder, each supported by strings. When calibrated against each other in pairs, the differences between measured RCS and predicted values are taken as the uncertainties for either object. Two standard-deviations from the target, reference, and background, as computed from repetitive sweeps, are taken as the respective uncertainties for the signals. Using the root-sum-squares (RSS) method, the error bars are found to be between + 0.1 to 0.2 dB for most of the frequency F, from 2 to 17.5 GHz. We also analyze the responses from a thin steel wire (dia. 0.020"), supported by fine fishing strings (dia. 0.012"), at broadside to the radar. When the ‘wire and string’ assembly is oriented vertically, the HH echo from the 3-ft metal wire alone happens to be comparable to the HH from the 30-ft dielectric strings. Varying with F4, the combined RCS in HH for the assembly spans a wide range of 38 dB from 2 to 18 GHz. The error bounds are found to bracket the measured traces even when the signals are barely above the noise floor.
Efficient EM Test Environment Characterization and Error Compensation
B.J. Cown (GEMTECH Microwaves, Inc.),J.P. Estrada (GEMTECH Microwaves, Inc.), November 2001
The work described in this paper is devoted to measurement and analysis techniques for performing electromagnetic (EM) test environment assessments and error compensations for antenna performance testing and RCS testing at indoor and outdoor test sites. This paper is focused primarily on test articles and test facilities that are physically and/or electrically large and difficult to handle by conventional measurement and analysis techniques. The approaches discussed herein are based on the combined use of 1) arrays of EM field probes to rapidly measure the test zone fields, and 2) specialized EM spectral analysis techniques including the MUSIC high resolution imaging technique and the Spherical Angular Function (SAF) integral formulation of EM coupling and scattering.
Tracking Modes in Waveguides Measurements
J.C. Castelli (ONERA DEMR), November 2001
We introduce a very efficient method for extracting from RCS measurements the cutoff frequency of modes propagating in a waveguide of arbitrary cross section. Based on a model of propagating mode, it offers the capability of identification of mode and it gives also an information about the frequency evolution of the mode excitation amplitude. The effectiveness of this method is illustrated by the analysis of measurements of different shapes of waveguide. The results obtained show that this representation widely improved the performance of time-frequency distributions usually used to analyze this kind of dispersive structure.
Broadband Dielectric Probe for Near Field Measurements
C-C Chen (ElectroScience Laboratory),P.A. Diez (ElectroScience Laboratory), W.D. Burnside (ElectroScience Laboratory), November 2001
A novel broadband dielectric rod probe design that has the characteristics of broad bandwidth; symmetric probe pattern; low RCS; low antenna clutter and dual polarization operation is discussed. The RCS level reduces the interaction between the probe and antenna under test (AUT). The lower antenna clutter level improves the sensitivity in detecting responses from wide angles with greater time delays. During the transmission mode, the rod is excited with a broadband microwave launcher from one end. The radiation then occurs at the other terminal of the rod. Measurement results of the far-field patterns, RCS and reflection coefficient for a prototype rod probe (DRP) are presented.
Estimating the Contribution to RCS Uncertainty From Non-Planar Illumination in a Compact Range
B. Welsh (Mission Research Corporation),B. Kent (Air Force Research Laboratory), November 2001
Compact RCS measurement ranges all suffer from some level of non-ideal field illumination. Stray fields from interactions with the chamber wall and diffraction effects are major contributors to the non-uniformity of the incident field at the target. This non-uniformity gives rise to unavoidable errors in RCS measurements. We present a detailed analysis of how non-uniform illumination manifests itself into RCS measurement errors. The analysis approach is based on the plane wave spectral decomposition of the illumination. We compute the energy scattered by the planar components of the illumination and determine how much of this energy is coupled backi nto the radar antenna. We model the target as a diffuse scatterer by using a collection of point scatterers distributed within a specified volume. We present uncertainty results based on a simulation as well as field probe data collected from AFRL’s Advanced Compact Range (ACR).
Performance of an Experimental Outdoor RCS Range With R-Card Fences
I.J. Gupta (The Ohio State University),W.D. Burnside (The Ohio State University), November 2001
A 30-meter experimental outdoor RCS range designed to operate from 6-18 GHz is described. In the range, the radar antenna height is 60 cm; whereas the center of the quiet zone is 3 meters above ground. The test range, therefore, has features of many real world outdoor RCS ranges. The test range uses six R-card fences with edge taper to eliminate the ground bounce term. Using the quiet zone field probe data and backscatter measurements, it is demonstrated that the R-card fences are very effective in eliminating the ground bounce term.
Three-Dimensional RCS Imaging of Ground Vehicles at an Outdoor Static Test Range
R. Bender (United States Army Research Laboratory),J. Dammann (United States Army Research Laboratory) J. Silivious (United States Army Research Laboratory), R. Tan (United States Army Research Laboratory), T. Pizzillo (United States Army Research Laboratory), November 2001
Static RCS ranges typically generate RCS imagery using ISAR imaging techniques. This provides a twodimensional image of amplitude plotted within some down-range and cross-range extent. The down-range resolution is a function of the bandwidth of the radar system while the cross-range resolution is a function of the target motion between consecutive measurements. A radar look down angle of 0-degrees provides the maximum cross-range information because the target’s movement is normal to the transmitted wave front. As the radar look down angle is changed from 0-degrees to 90-degrees less cross-range information is gathered as the target movement becomes more coplanar to the transmitted wave front. At a radar look down angle of 90 degrees no cross-range information can be discerned. To collect 3-dimensional data for imagery at a look down angle of 90-degrees a raster scan type process can be used. In this implementation the beamwidth of the radar antenna was changed to produce a 6-inch spot on the target rather than fully illuminating the target as is typical with ISAR imaging. A rail was built over the target to support a linearly scanned reflecting plate to direct the transmitted pulse down onto the target to simulate a radar look down angle of 90-degrees. The target was rotated 370-degrees (10-degree overlap) beneath the stationary reflecting plate providing a circumferencial scan i.e. a ring. After each rotation, the reflecting plate was moved a fixed interval radially and another ‘ring’ of data was collected. This procedure was repeated until the entire target was measured. This method of scanning provided two-dimensional information of the target’s length and width with height information obtained by using a 256-stepped-frequency waveform over a bandwidth of 1.6 GHz providing complete three-dimensional imagery.
Mitigation of Multipath and Ground Interactions in RCS Measurements Using a Single Target Translation
I.J. LaHaie (AARDC),M.A. Blischke (AARDC), November 2001
Translating pylon terminations are often used in narrowband RCS background measurements as means of separating the returns of the termination from those of the pylon itself. Typically, this is done by measuring the pylon while the fixture continuously translates in the range direction through a distance of at least half a wavelength. This paper describes a translated target processing (TTP) algorithmw hich is an extension of this technique to RCS measurements of rotating targets. The technique is applicable to both narrowband and wideband measurements. The algorithm is applied to the problemof mitigating multipath and ground interaction contamination in indoor and outdoor RCS measurements, respectively. Its performance was evaluated as a function of signal-to-noise ratio, target-tocontamination ratio, and translation distance and accuracy using point target simulations. We conclude with a demonstration of the TTP algorithm using actual measurements from the Boeing 9-77 compact range.
Design of Target Support Columns Using EPS Foam
J. Berrie (Mission Research Corporation),Gregory L. Wilson (Mission Research Corporation), November 2001
When making RCS measurements on a ground bounce range, EPS foam columns are frequently used as target supports for testbodies and air vehicles. Since background subtraction is rarely used to suppress foam column scattering in large scale RCS measurements, the columns must be structurally sound while maintaining a minimized RCS signature over the aspect angles and radar frequency band of interest. The goal is to devise a column that is unnoticeable in the measured data yet strong enough to support a specified weight. The major factor that contributes to EPS foam column scattering is shaping, and finding the optimal shape for a particular test is not trivial. This paper describes methods in the design and construction of EPS foam columns. Subjects include determination of EPS material properties, mathematical specification of column geometries, accurate and efficient computation of column mechanics and scattering, and effective optimization of column parameters.
RCS Measurements in an Anechoic Chamber in V/UHF Band: Ray Tracing Model and Exact Simulation
G. Maze-Merceur,P. Bonnemason, November 2001
CAMELIA is a large RCS measurements facility (45m.12m.13m in dimensions) that is operated at both SHF and V/UHF frequencies. In the V/UHF band, coupling between the target and the walls can be exhibited, due to non directive transmitting/receiving antenna, and low efficiency absorbers, that must be eliminated to derive the intrinsic response of the target To this aim, we have first developed a 1:10 small scale model of the chamber, that is operated in the SHF band. It enables the experimental simulation of RCS measurements in the V/UHF band, and confirmed the interpretation of the electromagnetic phenomena in the large scale facility ([l]). Then, two theoretical algorithms were developed, modeling these coupling phenomena. The first one is a simple ray tracing model, requiring as input data the measured reflection coefficient of the walls, the radiation pattern of the transmitting/ receiving antenna and the bistatic RCS of the target. The second one introduces an analytical model for the antenna and its images with respect to the walls, and calculates the near field scattered by the target. The measurement of several targets bas been modeled, and a good agreement bas been obtained. The advantages and drawbacks of each method are discussed.
Quasi-Optical Waveguide Modeling Method for Scattering Matrix Measurements in the Near Millimeter and Submillimeter Wave Regions
V.K. Kiseliov (National Academy of Sciences of Ukraine),P.K.. Nesterov (National Academy of Sciences of Ukraine), T.M. Kushta (National Academy of Sciences of Ukraine), November 2001
Earlier (AMTA'97, AMTA'98), we have proposed a new low-cost laboratory method named the quasi-optical waveguide modeling (QWM) method to study power and amplitude-phase scattering characteristics of objects, in particular the RCS of targets or their scale models, in the near millimeter (NMM) and submillimeter (SMM) wave regions. A specific feature of this technique in that an investigated object (or its scale model) is mounted inside a quasi-optical waveguide structure in the form of a hollow dielectric waveguide (HDW), in which the scattering characteristics of the waveguide dominant HE11 mode are determined. These characteristics are related to the wanted scattering characteristics of the test object in free space by definite relationships. At the same time the HDW serves several functions: it forms a quasiplane incident wave within the scattering area where test object is placed, performs the low-loss and low-distortion transmission of the scattered wave carrying information of the object being tested to the receiver, effectively filters the unwanted modes arising at the scattering on the test object, and insulates the measurement area from the ambient conditions containing parasitic sources. In this paper we consider the possibility of using the QWM method to study polarization backward scattering characteristics of physical objects, in particular the complex elements of the scattering matrix with relative phase (SMR). A quasi-optical polarimetric micro-compact range (PMCR) based on the circular HDW and quasi-optical devices has been developed and built. The measurement results of the SMR and backward scattering patterns of a reference object as a square metallic cylinder obtained in the PMCR for the different linear polarization basic sets at the 4-mm wave band are presented. The comparison between the experimental results for the reference object and the theoretical data calculated by the geometrical theory of diffraction have shown a good agreement, and demonstrated the possibilities of the QWM method, and its good perspectives for backward scattering polarization characteristics modeling in the NMM and SMM wave regions.
Positioning System Upgrade of an Existing Measurement System
W. Forster (Mission Research Corporation), November 2001
An accurate and reliable target positioning system is mandatory for a good antenna and/or radar cross section (RCS) measurement facility. Most measurements involve characterizing the radiation or scattering of the unit under test as a function of angle and frequency. Accuracy and repeatability become increasingly important in RCS measurements where background subtraction is utilized. Any error in target position will reduce the subtraction effectiveness. Wear and tear of existing equipment coupled with improvements in motion control technology may compel some measurement facilities to upgrade their positioning system. Doing so, while keeping the rest of the measurement system intact, poses integration challenges that cannot be over emphasized. Problems will inevitably be encountered. Their source could be the new positioning system, the old measurement system, or the communication between the two. Subtleties of how the motion control system works can be overlooked during the requirements definition phase of the project. Further idiosyncrasies can be missed during acceptance testing of the system. The Air Force Research Lab compact range has recently upgraded their target positioning system and will share the lessons learned as a result.
Uncertainty Analysis on the RCS Measurements From a Pair of Ultraspheres
A.W. Reed (The Boeing Company),C.N. Ericksen (The Boeing Company), D.P. Morgan (The Boeing Company), P.S.P. Wei (The Boeing Company), November 2002
In 2001, the Boeing 9-77 Indoor Compact Range successfully passed the range certification process. In preparation and during the On-Site Review in October 2001, RCS data on a pair of ultraspheres for the dualcalibration were collected. In this paper, we analyzed the data with regard to uncertainty analysis. An empirical approach for compensating the systematic error is presented.
Design of Target Support Columns Using EPS Foam: Predictions vs. Measurements
J. Berrie (Mission Research Corporation), November 2002
When making large scale RCS measurements on a ground bounce range, EPS foam columns are frequently used as target support structures for test bodies and air vehicles. Thus, the design of foam columns is a key part in preparing for a large-scale outdoor test. Range engineers require foam column design methods and tools that are both efficient and reliable. This paper describes effective foam column design methods and shows comparisons of predicted column RCS to column measurements performed at NRTF. These comparisons give credibility to the concept of foam column modeling and ground bounce range scattering simulations, and give range engineers confidence in their foam column design process.
Numerical Analysis of a Novel Tapered Chamber Feed Antenna Design
K-H Lee (ElectroScience Laboratory),C-C Chen (ElectroScience Laboratory), R. Lee (ElectroScience Laboratory), W.D. Burnside (ElectroScience Laboratory), November 2002
Tapered chambers have long been used for far-field antenna and RCS measurements. Conventional taper chambers used commercial antennas such as horns or log-period dipoles as wave launchers. One problem of this approach is the movement of the phase center associated with the antenna design. The positioning of the antenna inside the chamber is also critical. Undesired target-zone amplitude and phase distortion are caused by the scattering from the absorber walls. A novel feed antenna design for a tapered chamber is proposed here to provide broadband and dual polarization capabilities. This design integrates the absorber and the conducting walls behind the absorbers into to ensure a stationary phase center over a wider frequency range. In such a design, the dielectric constant of the absorber is utilized to maintain a clean phase front and a single incident wave at high frequencies. The conductivity of the absorber is also utilized to shape the field distribution at low frequencies. As a result, a wider frequency range can achievable for a given chamber size. One trade-off of this design is its reduced efficiency could be associated with the absorber absorption. Some simulation results from a 3-D FDTD model of a prototype design will be presented.
Critical Technologies for Performing RCS Target Measurements Using a String Support System
A. Buterbaugh (Mission Research Corporation),C. Mentzer (Mission Research Corporation), November 2002
Target support pylons and foam columns have been in use since the late 1970’s to provide target support for RCS measurements. Pylons currently limit our low frequency measurement capability due to the moderately high scattering from the pylon edges. Additionally both foam column and pylon support structures interact with the target scattering which can limit our ability to completely subtract the target support scattering from the target signature data. Target suspension using a string support system has the potential to eliminate these limitations. MRC has recently completed a string support technology demonstration program to identify the critical components for implementing an indoor string support system for RCS measurements. Critical components identified and demonstrated under this program included a survey of string materials for RCS measurements, development of low coefficient of friction swivel bearings, structural target to string interfaces, and three different techniques for providing target rotation. This presentation will highlight the results from the demonstration program showing viability of string support systems to provide an enhanced RCS measurement capability for indoor RCS measurement ranges
Extension of Compact Range Test Zone by Taper Compensation
M.S. Emire (Naval Air Warfare Center),D.L. Mensa (Sverdrup Technologies), L. To (Naval Air Warfare Center), November 2002
This paper presents a method for correcting RCS data obtained from objects extending beyond the boundaries of the test zone into the transition region of a large compact range collimator. The technique, exploiting the non-zero irradiation in the transition regions, uses results of calculated or measured field probes in conjunction with an image-based decomposition of the target angular response to correct for the field taper. The taper correction is developed as a weighting function applied to the spatial distribution with frequency-dependent coefficients derived from the field probes; the corrected RCS response is then obtained by an inverse operation. The paper addresses the conceptual notions of the approach and the limitations inherent to the underlying assumptions. Results of tests on canonical and actual targets are shown to demonstrate the applicability of the technique.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.