Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
Sara Burgos (Universidad Politécnica de Madrid.),Manuel Sierra-Castañer (Universidad Politécnica de Madrid),
H. Eriksson (SAAB Microwave Systems),
O. Breinbjerg (Technical University of Denmark),
S. Pivnenko (Technical University of Denmark), November 2008
Within the European Union network "Antenna Center of Excellence" – ACE (2004-2007), a first intercomparison campaign among different European measurement systems, using the 12 GHz Validation Standard (VAST12) antenna, were carried out during 2004 and 2005. One of the challenges of that campaign was the definition of the accurate reference pattern. This was the reason why a dedicated measurement campaign for definition of the accurate reference pattern was hold during 2007 and beginning of 2008. This second campaign is described in the companion paper “Dedicated measurement campaign for definition of accurate reference pattern of the VAST12 antenna”. This dedicated measurement campaign was performed by Technical University of Denmark (DTU) in Denmark, SAAB Microwave Systems (SAAB) in Sweden and Technical University of Madrid (UPM) in Spain. This campaign consisted of a large number of measurements with slightly different configurations in each of the three institutions (2 spherical near field systems and one compact range). The purpose of this paper is to show the process to achieve the reference pattern from each institution and the evaluation of the accuracy. The acquisitions were performed systematically varying in applied scanning scheme, measurement distances, signal level and so on. The results are analyzed by each institution combining the measurement results in near or far field and extracting from these measurements: a “best” pattern, an evaluation of possible sources of errors (i.e. reflections, mechanical and electrical uncertainties) and an estimation of the items of the uncertainty budget.
Stuart F. Gregson (Nearfield Systems Inc.),Greg E. Hindman (Nearfield Systems Inc.), November 2008
A near-field measurement technique for the prediction of asymptotic far-field antenna patterns from data obtained from a modified cylindrical, or plane-polar, near-field measurement system is presented. This technique utilises a simple change in facility alignment to enable near-field data to be taken over the surface of a conceptual right cone [1, 2], or right conic frustum [3, 4] thereby allowing existing facilities to characterise wide-angle antenna performance in situations where hitherto they would perhaps have been limited by truncation. This paper aims to introduce the measurement technique, describe the novel probe-corrected near-field to far-field transform algorithm which is based upon a cylindrical mode expansion of the measured fields before presenting preliminary results of both computational electromagnetic simulations and actual range measurements. As this paper recounts the progress of ongoing research, it concludes with a discussion of the remaining outstanding issues and presents an overview of the planned future work.
Francesco D'Agostino (University of Salerno),Carlo Rizzo (MI Technologies Europe),
Claudio Gennarelli (University of Salerno),
Flaminio Ferrara (University of Salerno),
Jeff Fordham (MI Technologies),
Massimo Migliozzi (University of Salerno ),
Rocco Guerriero (University of Salerno), November 2008
In this work an experimental validation of the nearfield – far-field transformation technique with helicoidal scanning tailored for elongated antennas is provided.
Such a transformation relies on the theoretical results relevant to the nonredundant sampling representations of the electromagnetic fields and makes use of an optimal sampling interpolation algorithm, which allows the reconstruction of the near-field data needed by the near-field – far-field transformation with cylindrical scan. In such a case, a prolate ellipsoid is employed to model an elongated antenna, instead of the sphere adopted in the previous approach. It is so possible to consider measurement cylinders with a diameter smaller than the source height, thus reducing the error related to the truncation of the scanning surface.
The comparison of the reconstructions obtained from the data directly measured on the classical cylindrical grid with those recovered from the nonredundant measurements on the helix assesses the validity of this innovative scanning technique.
Farhad Razavi (University of California, Los Angeles),Yahya Rahmat-Samii (University of California, Los Angeles), November 2008
The Phaseless techniques have gained considerable attention during the past two decades in the antenna measurements community. The removal of the phase measurements has some immediate advantages over the common vectorial measurements. They are cost effective, well-adapted for higher frequencies and insensitive to phase instabilities. The phaseless techniques have been discussed in the antenna measurements community and the theories behind these techniques are well explained in the literature. Unfortunately the issue of the noise and the presence of measurement errors are not investigated in details to provide strong impetus to the importance of phaseless measurements. In this paper the near field of a number of different types of antennas with high, medium and low side lobes is simulated to create as realistic case as possible. The effects of the probe positioning errors are investigated by injecting random errors in the position of the probe samples along x-, y- and z-axis. It is also illustrated how the positioning errors can distort the phase distributions. Through detailed characterizations of the constructed far field patterns, robustness of the Iterative Fourier technique even at the presence of very high probe positioning errors is demonstrated. It is shown how the utilization of the phaseless techniques will significantly reduce the probe positioning error effects when it is compared to the commonly used amplitude and phase near field measurement techniques.
Farhad Razavi (University of California, Los Angeles),Yahya Rahmat-Samii (University of California, Los Angeles), November 2008
The Phaseless techniques have gained considerable attention during the past two decades in the antenna measurements community. The removal of the phase measurements has some immediate advantages over the common vectorial measurements. They are cost effective, well-adapted for higher frequencies and insensitive to phase instabilities. The phaseless techniques have been discussed in the antenna measurements community and the theories behind these techniques are well explained in the literature. Unfortunately the issue of the noise and the presence of measurement errors are not investigated in details to provide strong impetus to the importance of phaseless measurements. In this paper the near field of a number of different types of antennas with high, medium and low side lobes is simulated to create as realistic case as possible. The effects of the probe positioning errors are investigated by injecting random errors in the position of the probe samples along x-, y- and z-axis. It is also illustrated how the positioning errors can distort the phase distributions. Through detailed characterizations of the constructed far field patterns, robustness of the Iterative Fourier technique even at the presence of very high probe positioning errors is demonstrated. It is shown how the utilization of the phaseless techniques will significantly reduce the probe positioning error effects when it is compared to the commonly used amplitude and phase near field measurement techniques.
Daniel Janse van Rensburg (Nearfield Systems Inc.), November 2008
In this paper a technique is described that allows for the determination and correction of probe translation during polarization rotation in planar near-field measurements. The technique, which relies on the independent translation of coordinate systems for the two orthogonally polarized data sets, has significance for mm-wave testing, where bulky RF components makes probe alignment difficult. Measured data is presented to demonstrate the success of the technique.
Pawel Kabacik (Wroclaw University of Technology),S. Pivnenko (Technical University of Denmark),
Damian Wydymus (Wroclaw University of Technology),
Michal Preisner (Wroclaw University of Technology),
Olav Breinbjerg (Technical University of Denmark),
Przemyslaw Gorski (Wroclaw University of Technology),
Tomasz Maleszka (Wroclaw University of Technology), November 2008
This paper describes joint studies of Wroclaw University of Technology and Denmark Technical University on optimizing placement and performance of low-profile antennas on small satellite, such as ESMO Moon orbiter. After comprehensive electromagnetic studies with use of numerical analysis, a spacecraft mockup modeling its conductive surfaces was developed. Two to four antennas were mounted and several placement configurations were investigated. For verification purpose of numerical analysis and formulating design guidelines to an actual Moon probe, precise measurements of combined radiation pattern were performed at the Near-Field Antenna Test Facility, Denmark Technical University.
Joseph Mruk (University of Colorado Boulder ),Dejan Filipovic (University of Colorado Boulder),
W. Neill Kefauver (University of Colorado Boulder), November 2008
Full-wave modeling and far-field measurements are utilized to study the effects of a microstrip feeder on the band rejection and the far-field purity of planar log-periodic antennas. Three different configurations are investigated. Specifically, band rejection by relevant teeth removal (near/far-field), integration of the band-stop filter (near-field only), and the combination of the two are studied. Far-field contamination effects due to a microstrip feed line, and coupling to the antenna radiator, are evaluated for both radiating and band rejection regions. Important guidelines regarding the position and distancing of the feed to the radiator, as well as the trade-offs between substrate and superstrate configurations are derived. Antennas are developed to have a VSWR better than 2.5:1 in the 2-4 GHz and 7-11 GHz bands, and band rejection centered at 6 GHz. It is clearly shown that log-periodic antennas can be readily designed to have arbitrary, even reconfigurable, band rejection regions where overall realized gain is notched for more than 20 dB. A computer aided analysis was performed using commercial finite element and method of moments software tools. The measurements were conducted at Lockheed Martin in Denver, Colorado.
Earl G. Williams (Naval Research Laboratory),Douglas Smith (Naval Research Laboratory),
Nicolas Valdivia (Naval Research Laboratory), November 2008
Highlights of work at the Naval Research Laboratory in evanescent near-field electromagnetic holography (ENEH) will be presented. This work grew out of extensive experimental work in near-field acoustical holography at our laboratory that has been recognized formally by the Laboratory as one of the 75 most innovative technologies over the past 75 years. This new electromagnetic approach differs from the usual nearfield imaging in that it provides much better than halfwavelength resolution due to the inclusion of evanescent waves. Furthermore ”imaging” to a source surface provides a reconstruction of the surface currents, Poynting vector as well as the E and H field vectors.
These quantities are derived from two measured holograms (phase and amplitude) of two polarizations of the electric and/or magnetic fields over a 2-D surface (the hologram). Experimental work in both low (100 Hz) and high frequencies (10GHz) is of interest, although we present here results of the latter along with the theory. Two approaches will be discussed for backtracking the measured fields: one that uses wave function expansions in plane, cylindrical or spherical geometries, highlighting the cylindrical geometry in this paper, and a second more general formulation that uses the field expanded using an array of equivalent dipole sources especially useful in arbitrary geometries. Both approaches represent inverse methods and are ill-posed and require regularization to stabilize the reconstructions.
We hope that these methods will provide high resolution new diagnostic tools for antenna analysis, as well as diagnostics for applications in EMC and EMI among others. Currently we are seeking partnership with other laboratories and universities to direct this technology towards problems that could benefit from its unique diagnostic capabilities. Work supported by the Office of Naval Research.
S. Burgos (Universidad Politécnica de Madrid),F. Martin (Universidad Politécnica de Madrid),
J.L. Besada (Universidad Politécnica de Madrid),
M. Sierra-Castañer (Universidad Politécnica de Madrid), November 2008
An error simulator based on virtual cylindrical near-field acquisitions has been implemented in order to evaluate how mechanical or electrical inaccuracies may affect the antenna parameters. In outdoor ranges, where the uncertainty could be rather important due to the weather conditions, an uncertainty analysis a priori based on simulations is an effective way to characterize measurement accuracy. The tool implemented includes the modelling of the Antenna Under Test (AUT) and the probe and the cylindrical near-to-far-field transformation. Thus, by comparing the results achieved considering an infinite far-field and the ones obtained while adding mechanical and electrical errors, the deviations produced can be estimated. As a result, through virtual simulations, it is possible to determine if the measurement accuracy requirements can be satisfied or not and the effect of the errors on the measurement outcomes can be checked. Several types of results were evaluated for different antenna sizes, which allowed determining the effect of the errors and uncertainties in the measurement for the antennas under study.
Symon Podilchak (Royal Military College of Canada),Y.M.M. Antar (Royal Military College of Canada),
Al Freundorfer (Queen’s University), November 2008
The near-field aperture distribution excited on the guiding surface of various planar leaky-wave antenna designs is examined. The investigated antennas (for millimeter wave applications) are realized by circular, straight and elliptical metallic strip gratings on a high permittivity dielectric substrate. With such straight and curvilinear grating configurations, analytical determination of the near-field, and hence the leaky-wave phase and attenuation constants along the guiding surface, can be mathematically intensive. To assist in such complex characterizations, the near-field/far-field extrapolation techniques can provide insight and thus illustrate such 2- D aperture field distributions. Specifically, by taking the inverse Fourier transform of measured 2D far-field beam patterns, the near-field distribution along the aperture can be estimated.
Greg Hindman (Nearfield Systems Inc.),Allen Newell (Nearfield Systems Inc.), November 2008
NSI’s MARS technique (Mathematical Absorber Reflection Suppression) has been used to improve performance in anechoic chambers and has been demonstrated over a wide range of frequencies on numerous antenna types. MARS is a post-processing technique that involves analysis of the measured data and a special filtering process to suppress the undesirable scattered signals. The technique is a general technique that can be applied to any spherical or far-field range or Compact Antenna Test Range (CATR). It has also been applied to extend the useful frequency range of microwave absorber to both lower and higher frequencies than its normal operating band. This paper will demonstrate the use of the MARS capability in evaluating the performance of anechoic chambers used for spherical near-field measurements, as well as in improving chamber performance.
Matti Vaaja,Antti Räisänen, Janne Häkli, Juha Mallat, November 2007
Planar near-field probing is used in the optimisation of the quiet-zone of a hologram-based compact antenna test range (CATR). In this paper, the measurement instrumentation for 650 GHz operation is introduced and the potential measurement errors in the quiet-zone measurements are identified. Applicable error correction and compensation methods are discussed and the total measurement accuracy is calculated.
A probe-compensated near-field-to-far-field transform algorithm has been developed that can generate far-field patterns from near-field measurements made on an arbitrary surface. We present the concept, the algorithm, and computer simulated and measured test results for measurements on a conical surface. The prototype conical near-field measurements were made in a planar near-field range on a horn antenna under test (AUT) mounted on an azimuth-over-elevation positioner to produce a conical measurement surface. This system is especially applicable for producing full-hemisphere far-field patterns for antennas mounted on vehicles where other standard measurement systems may not adapt to the profile well, may not provide full-hemisphere coverage, or may require large, mechanically complex systems.
Calibration of planar near field probes is generally required to obtain accurate cross-polarization measurements of satellite antennas; however, probe calibration is costly and time consuming. One way to avoid probe calibration is to ignore the probe cross-polarization and use the probe co-polarized patterns alone for probe correction. Then the probe can be easily characterized by standard, in-house measurements or by analytical models. Of course, if the probe cross-polarization is ignored, additional errors are introduced in the co- and cross-polarized pattern measurements, but the errors can be manageable, depending on the probe and Antenna-Under-Test (AUT) polarization properties. Complete formulas and/or tables for near field measurement errors for three popular measurement configurations are presented, along with experimental verification of the error estimates for one case.
The DGA/CELAR (France) (Centre d'Electronique de l'Armement: French Center for Armament Electronics) is able to measure targets in order to get their RCS (Radar Cross Section). Yet CELAR RCS measurement facilities are not compact bases and therefore the measured field is a near field. This article proposes a solution allowing the transformation of this near field to a far field and this in the three dimensions of space without limiting any dimension with Fraunhöfer criterion. Thanks to this method the RCS of a target is able to be known in any direction of space and moreover the calculation of a three-dimensional ISAR (Inverse Synthetic Aperture Radar) picture is thus possible. At first the theoretic part of our work is presented. Then a fast method in order to calculate the transformation of a near field to a far field by optimising the calculation time thanks to signal processing theory is given. Finally obtained results from simulated bright points are presented.
Francesco D'Agostino,Carlo Rizzo, Claudio Gennarelli, Flaminio Ferrara, Massimo Migliozzi, Rocco Guerriero, November 2007
ABSTRACT A new probe compensated near-field – far-field transformation technique with planar spiral scanning is here proposed. It is tailored for quasi planar antennas, since an oblate ellipsoid instead of a sphere is considered as surface enclosing the antenna under test. Such an ellipsoidal modelling is quite general (containing the spherical one as particular case) and allows one to consider measurement planes at a distance smaller than one half the maximum source size, thus reducing the error related to the truncation of the scanning surface. Moreover, it reduces significantly the number of the needed near-field data when dealing with quasi planar antennas. Numerical tests are reported for demonstrating the accuracy of the far-field reconstruction process and its stability with respect to random errors affecting the data.
Y. Chevalier, P. Minivielle,F. Degery, P. Berisset, November 2007
Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern. In order to perform more complete characterizations, a spherical experimental layout has been developed at CEA for indoor near field monostatic RCS assessment. The experimental layout is composed of a motorized rotating arch (horizontal axis) holding the measurement antennas. The target is located on a polystyrene mast mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allows full 3D near field monostatic RCS characterization. Two bipolarization monostatic RF transmitting and receiving antennas are driven by a fast network analyser : - an optimised phased array antenna for frequencies from 800 MHz to 1.8 GHz - a wide band standard gain horn from 2 GHz to 12 GHz. This paper describes the experimental layout and the numerical post processing computation of the raw RCS data. Calibrated RCS results of a canonical target are also presented and the comparison with compact range RCS measurements is detailed.
Y. Chevalier, P. Minivielle,F. Degery, P. Berisset, November 2007
Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern. In order to perform more complete characterizations, a spherical experimental layout has been developed at CEA for indoor near field monostatic RCS assessment. The experimental layout is composed of a motorized rotating arch (horizontal axis) holding the measurement antennas. The target is located on a polystyrene mast mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allows full 3D near field monostatic RCS characterization. Two bipolarization monostatic RF transmitting and receiving antennas are driven by a fast network analyser : - an optimised phased array antenna for frequencies from 800 MHz to 1.8 GHz - a wide band standard gain horn from 2 GHz to 12 GHz. This paper describes the experimental layout and the numerical post processing computation of the raw RCS data. Calibrated RCS results of a canonical target are also presented and the comparison with compact range RCS measurements is detailed.
Andrea Cozza, PhD,Benoit Derat, PhD, Nicolas Ribiere-Tharaud, PhD, November 2007
A new method is here proposed to accurately evaluate the Specific Absorption Rate (SAR), e.g. of a mobile phone, through free-space measurements. The method takes advantage of the simple yet powerful plane-wave spectrum (PWS) representation of the electromagnetic (EM) field. The emitting device is tested in an anechoic chamber, where the two tangential components of the electric field are measured (amplitude and phase) and expanded into their PWS. These experimental data are subsequently fed to an equivalent transmission-line representation of the planar stratified structure composed by stacking the half-space made of free-space and the stratified flat phantom. Numerical simulations have shown that this method allows to accurately reconstruct the E field distribution inside a homogeneous phantom, with a worst-case error of 26 % in the estimation of the peak E field [1,2]. Furthermore, the proposed method is the first practical procedure for assessing the SAR in a stratified phantom, where the standard approach of moving a probe inside a liquid-filled phantom is no more feasible.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.