AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Imaging

Three-dimensional radar cross section imaging
R. Harris,B. Freburger, C. Zappala, M. Lewis, November 1994

Three-dimensional imaging capability has recently been added to METRATEK's Model 200 RCS Diagnostic Radar. This paper describes the rationale and methodology for producing three­ dimensional images and gives sample images taken with the system.

Enhanced high resolution radar imaging
J.W. Odendaal,E. Walton, I.J. Gupta, November 1994

Radar with the 2-D Fourier trans- form of the scattered field data in frequency and/or have poor resolution. A modified brid method and a modified 2-D AR technique are proposed to high radar images us- limited backscattered field data. The final image presents the scattering properties of the target in a quantitative way. The peaks in the image represents the positions of centers contributing to the backscattered field. Furthermore, the amplitudes of the peaks correspond to the intensities of the scattering centers.

RCS doppler measurements at millimeter wave frequencies
K. Schmitt,G. Wanielik, R. Schneider, S. Bhagavathula, W. Wiesbeck, November 1994

A versatile millimeter wave imaging radar is presented to conduct polarimetric doppler as well as wide band RCS measurements. The aim of the system is not only to acquire doppler measurements of determine the distance of an object but also to generate image-like information for classification purposes. A hardware gate controller is incorporated in the system to perform pulsed measurements. This controller can drive three different frequency extension modules covering frequency ranges from 8 to 18 GHz, 70 to 80 GHz and 75 to 77 GHz respectively. In all bands, dual polarized horns are used to allow fully polarimetric measurements. A network analyzer and a FFT analyzer are used as receivers. For both concepts the advantages and disadvantages are discussed. The transmit and the receive antenna are mounted on a positioner. Thus, a radar image using the real aperture of the antennas can be generated by mechanical scanning in azimuth and elevation.

High resolution one dimensional radome characterization
A. van der Merwe,C.W.I. Pistorius, D.J. Janse van Rensburg, November 1994

In this paper radome evaluation based on high resolution imaging techniques is described. It allows anomalies on a large radome to be detected very accurately. It required scanning of the radome through only a small angular section using an inverse synthetic aperture radar approach. The one dimensional image formed from field data provides a linear distribution of scattering source locations. The calibration necessary to compensate for the translation and rotation of the antenna is discussed. The technique is demonstrated through measurements performed on a large fibre glass radome.

Band concatenation for higher resolution RCS imaging
D.P. Morgan, November 1994

Radar Cross Section (RCS) measurements are often performed in discrete frequency bands for a variety of reasons. Although some indoor ranges are capable of performing very wide-band measurements (with bandwidths up to or exceeding 9: 1), some are designed with very rigid illumination requirements on the coIIimating reflector(s) that can only be met over a narrow band. In addition, the bandwidth available on most outdoor ranges is limited by "ground plane" effects which make it impossible to maintain an adequate broadband field over the target. Often, RCS measurements are limited to half an octave at most. Since resolution in RCS imaging is directly proportional to bandwidth, there exists a need for concate nati ng several discrete bands of measurements into a single continuous band. This resulting band must be free of both amplitude and phase discontinuities that would affect the quality of the resultant image. This paper discusses the sources of discontinuities between measured bands on both indoor and outdoor ranges, and provides algorithms for removing them using linear filtering methods. Data is presented from an outdoor range illustrating the results on targets up to 70-feet in length.

Non-linear windowing for ISAR images
R. Dezellem,D. Mensa, J. Adams, K. Vaccaro, November 1994

ISAR images are formed by Fourier processing coherent wideband responses collected with angle diversity. Unfortunately, physical and practical considerations limit the frequency and angle diversities achievable. The finite diversities induce sidelobes, which are usually mitigated by application of tapered windows in the spectral domain. This procedure reduces image sidelobes at the cost of increased mainlobe width, thus degrading resolution. Spatially-Variant Apodiz.ation (SVA), a new non­ linear method developed at ERIM to improve the quality of SAR imagery, reduces sidelobe levels while preserving the mainlobe width corresponding to unwindowed data. In contrast to conventional window techniques which simply apply the same window function to every image element, SVA operates on the image by adaptively applying a window optimized for each spatial element. The algorithm uses phase information available from the coherent RCS data to distinguish processing sidelobes from correct responses. Mainlobes are passed using rectangular weighting, while sidelobes are reduced or eliminated entirely. This paper discusses the concept, theory, and implementation of SVA for ISAR imaging, and summarizes capabilities and limitations of the method. Results using SVA are presented and compared to conventionally windowed one- and two-dimensional images. The sensitivity of the procedure to additive noise and phase errors is investigated

Application of ML estimation to radar imaging
I.J. Gupta,E. Walton, M.W. Tu, November 1994

An efficient maximum likelihood (ML) estimator to obtain the scattering center locations of a target and the relative scattering level of these scattering cen­ ters from the scattered field data is described. In the proposed method, ML estimation is carried out in the image domain rather than in the frequency-aspect do­ main. Inverse Fourier transform is used to transfer the scattered field data from frequency-aspect domain to the image domain (down range-cross range). As ex­ pected, the scattered field data in the image domain have some major lobes. The location and shape of the major lobes are used to obtain the initial guess for the ML estimator. The scattered field data samples in the major lobe regions are then used for ML estimations. It is shown that by carrying out the ML estimation in the image domain one can increase the computation efficiency by an order of magnitude.

ISAR image formation processing for airborne targets
R. Goodman,L. Joyce, L.. Cech, November 1994

A digital processing technique capable of forming fine resolution ISAR imagery of air vehicles in dynamic flight is presented. The interactive algorithm is predi­ cated on the ability to isolate one or two point-like scat­ terers in the target signature. Phase information extracted from these prominent point scatterers is pro­ cessed to yield high fidelity estimates of target motion over the image formation interval. Motion estimates are subsequently used to perform conventional ISAR motion compensation and to achieve equi-angular spa­ tial sampling between radar pulses. Existence of promi­ nent points obviates the need for any auxiliary information, such as on-board inertial navigation data, and permits focusing of images from non-cooperative targets. The processing procedure is illustrated with X­ band measurements of a Convair CV580 aircraft taken by the Ground to Air Imaging Radar (GAIR) system.

Amplitude and doppler modulation effects in ground to air ISAR data collected with a linear FM waveform
L. Cech,G. Fliss, W. Nagy, November 1994

The utility of high resolution ISAR data in the devel­ opment and maintenance of low observable (LO) and conventional aircraft and the identification and charac­ terization of threat aircraft is well established. However, the task of ISAR image RCS interpretation is difficult. Often imaging effects introduced by rotating blades and jet engine modulation (JEM) can compound the already difficult interpretation task. It is easy for these effects to be obscured, ignored, or erroneously misinterpreted in ISAR down-range versus cross-range (Doppler) imag­ ery and range compressed versus time domain data. This paper presents cases of amplitude and phase modulated ISAR data collected from two airborne targets; a propel­ ler driven airplane and a helicopter, using a linear FM waveform radar. This will be supplemented with mathe­ matical models describing the modulation phenomenon and the resultant imaging effects

Experimental RCS analysis of a communications antenna mounted on a large cylinder
E. Walton,H.W. Tseng, November 1994

The radar scattering from a small communications antenna mounted on a large cylinder was measured at the Ohio State University ElectroScience Laboratory compact range. This paper will describe the experimental measurement techniques and the details of the analysis of the experimental. The small (5 cm) blade/slot/cavity antenna was mounted on a 1.82 meter long cylinder of 0.61 meter diameter. The cylinder was treated with RAM on the ends to reduce the direct and interactive end scattering effects, and was mounted in the OSU compact RCS measurement range. Measurements over the 2 to 18 GHz band both with and without the antenna were made and the results subtracted during the calibration effects to further remove the end effects. We will demonstrate these techniques and evaluate their effectiveness. ISAR imaging of both the antenna and the scattering term associated with the load on the end of the antenna transmission line will be shown. This will demonstrate that the transmission line and loan can be separately evaluated using such techniques. A time frequency distribution (TFD) analysis technique will also be demonstrated as a means of extracting various antenna resonance terms from the data. A description of the theoretical computation of the scattering will also be given and the special aspects of this problem outlined. The theoretical RCS data will be compared to the experimental measurements of the RCS.

Waveform chirp speed effects on modulation artifacts in radar imagery
G. Fliss,D., Jr. Kletzli, W. Nagy, November 1994

Typical high-resolution dynamic target imaging radars have frequency scan rates that do not properly sample the modulation from rotating structures such as aircraft propellers, engine turbines and helicopter blades. This results in the scatterer modulation energy being aliased. Moreover, if the chirp rate is too slow blurring and of the scatterer can occur in the image. Often the utility of this data for RCS signature analysis is questioned. This paper addresses the utility of images generated from undersampled data of modu­ lating scatterers. Experimental results using various combinations of chirp scan, modulation, and target-body rotation rates are presented. Fast scan rates, typical of the Linear-FM waveform, are compared to the slower scan rates commensurate with step frequency wave­ forms. Images are shown illustrating how the different chirp speeds alter the two-dimensional image of a mod­ ulating target.

X-band linear frequency modulated radar for dynamic aircraft imaging, An
J. Trischman,E. Nelson, R. Bloomfield, R. Dinger, S. Jones, November 1994

Inverse synthetic aperture radar (ISAR) images of dynamic targets can be generated using stepped- frequency radars [1,2]. However, a stepped-frequency waveform requires many pulses transmitted over tens of milliseconds to achieve range resolution. This has the undesirable property that a target's rotating parts (such as propeller blades and jet engine compressor blades) can move significantly during this time. This results in of the Doppler sampling, and shifting and blurring in range, (range-Doppler coupling), which degrade the image quality. The Naval Command, Control and Ocean Surveillance Center, RDT&E Division (NRaD) has added a linear frequency modulated (LFM) waveform to its X-band imaging radar. This radar measures a 500 MHz bandwidth in 600 ns. The received signal is baseband converted, digitized, and stored. Data from this radar have been successfully processed into ISAR images that do not exhibit many of the undesirable properties of stepped­ frequency measurements

Practical aspects of 3D imaging
D. Flynn,S. Pressnall, November 1994

ISAR imaging has proved to be a _ significant diagnostic tool for the evaluation of RCS signatures because of its ability to resolve scatterers in both the cross range and down range dimensions. There is a growing desire to extend the imaging capability to include the vertical dimension of a target, or three­ dimensional (3D) imaging. Several techniques have been suggested with varying degrees of success and complexity. These techniques include triangulation from two or more ISAR images of the same target taken at different elevation angles, tomographic algebraic reconstruction, and true 3D ISAR imaging using the FFT. Each technique requires progressively more data and more complex algorithms, but results in more resolution. This paper examines these various techniques, and evaluates their advantages and disadvantages based on actual implementations using simulated data.

Clutter mapping system
J.F. Aubin,C.T. Nadovich, November 1994

A proper knowledge of clutter characteristics is critical to the design, development, and test of military seeker and radar hardware. The Clutter Mapping System under construction at Flam & Russell, Inc. is simple yet powerful tool for the evaluation of potential radar sites or the analysis of current sites. It provides a maximum 40 foot synthetic aperture that can image a 60 degree sector of terrain out to a 20 mile range and beyond. Aside from this primary mission, it has the capability to perform RCS measurement of non-cooperative ground targets or to serve as a tactical, quickly deployed imaging system. Totally self contained, and transportable, this system can fulfill a wide variety of RCS measurement needs.

High resolution imaging radar for ground-based diagnostic applications, A
D. Blejer,C. Frost, D. Blejer, H.R. Catalan, S. Scarborough, November 1994

Lincoln Laboratory has developed a high resolution imaging radar in conjunction with Flam & Russell, Inc., of Horsham, PA. This highly mobile, ground-based system is capable of 2-D and 3-D imaging of targets at very close ranges to a synthetic aperture. The radar is fully-polarimetric, and operates over two frequency bands (0.05-2 GHz and 2-18 GHz). The radar is currently being used for target imaging and for foliage and ground penetration experiments. In this paper, the radar system is described. In addition, data calibration and image formation are explained. Sample imagery, both 2-D and 3-D, are shown.

Free space characterization of materials
D. Blackham, November 1993

A simple change to the HP8510C or HP8720C vector network analyzer block diagram coupled with the TRM (Thru Reflect Match) calibration leads to accurate measurements of the material properties of flat samples. Algorithms developed for transmission line measurements can also be used in free space measurements. A description of recent improvements in the transmission/reflection algorithms is reviewed. Free space measurement results based on the transmission/reflection algorithms found in the HP85071B materials measurement software package are presented.

Automated test sequencer for high volume near-field measurements, An
G. Hindman,D. Slater, November 1993

Test sequencing flexibility and high throughput are essential ingredients to a state-of-the-art near-field test range. This paper will discuss methods used by NSI to aid the operator through the near-field measurement process. The paper will describe NSI's expert system and customer applications of a unique test and processing sequencer developed by NSI for optimizing range measurement activities. The sequencer provides powerful control of software functions including multiplexed measurements, data processing and unattended test operations.

Demonstration of bistatic electromagnetic scattering measurements by spherical near-field scanning, A
M.G. Cote,R.M. Wing, November 1993

The far-field radar cross section (RCS) of a conducting sphere is obtained by transforming scattered near-fields measured on a spherical surface. A simple and convenient calibration procedure is described that involves measuring the incident field directly at the target location. Although a non probe-corrected transmission formula was used in this study the importance of prove correction in practice is demonstrated.

Satellite and satellite antenna testing with high speed electronics
D.W. Hess,C.B. Brechin, November 1993

This presentation offers some examples of performance in accomplishing high volume testing under the rigorous technical constraints imposed by the satellite industry. As an example of a high speed system, the Scientific-Atlanta Model 2095 will be used to illustrate the capability offered by today's technology. This system has found applicatio0n in the facilities of five satellite manufacturers constructed within the past three years and is proven by its demonstrated application in satellite programs.

Remote thickness sensor
W.S. Arceneaux, November 1993

Applications that require tight tolerances on dielectric thickness control need accurate sensors. A technique has been developed that will allow for the measurement of thickness without requiring surface contact. High resolution radar imaging, commonly used in RCS measurements , is now being used to measure thickness. Electromagnetic fields reflected from the front and rear surface are detected and the time response delta is converted into thickness. A major advantage of this method is that it is not affected by varying sensor offset height.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30