AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Errors

Insights Into Spherical Near Field Probe Correction Gained From Examining the Probe Response Constants
Jason Jerauld, November 2016

Several recent articles [1-9] have focused on assessing spherical near field (SNF) errors induced by using a non-ideal probe, i.e. a probe that has  modal content. This paper explores this issue from the perspective of the probe response constants, defined by [10], which are the mathematical representation of the effect of the antenna under test (AUT) subtending a finite angular portion of the probe pattern at measurement distance . The probe response constants are a function of the probe modal coefficients, the size of the AUT (i.e. the AUT minimum sphere radius ), and the measurement distance , and thus can be used to evaluate the relative contribution of probe  content as both measurement distance and AUT size varies. After a brief introduction, the first section of this paper reviews the theory describing the probe response constants; the second section provides some examples of the probe response constants for a simulated broadband quad-ridge horn, and the final section examines measured AUT pattern errors induced by using the corresponding probe response constants in a conventional SNF-to-FF transform.   References:   [1] A. C. Newell and S. F. Gregson, “Effect of Higher Order Modes in Standard Spherical Near-Field Probe Correction,” in AMTA 2015 Proceedings, Long Beach, CA, 2015.   [2] Y. Weitsch, T. F. Eibert, and L. G. T. van de Coevering, “Investigation of Higher Order Probe Corrected Near-Field Far-Field Transformation Algorithms for Preceise Measurement Results in Small Anechoic Chambers, in AMTA 2015 Proceedings, Long Beach, CA, 2015.   [3] A. C. Newell and S. F. Gregson, “Estimating the Effect of Higher Order Azimuthal Modes in Spherical Near-Field Probe Correction,” in EuCAP 2014 Proceedings, The Hague, 2014.   [4] A. C Newell and S. F. Gregson, “Higher Order Mode Probes in Spherical Near-Field Measurements, in EuCAP 2013 Proceedings, Gothenburg, 2013.   [5] A. C. Newell and S. F. Gregson, “Estimating the Effect of Higher-Order Modes in Spherical Near-Field Probe Correction,” in AMTA 2012 Proceedings, Seattle, WA, 2012.   [6] T. A. Laitinen and S. Pivnenko, “On the Truncation of the Azimuthal Mode Spectrum of High-Order Probes in Probe-Corrected Spherical Near-Field Antenna Measurements,” in AMTA 2011 Proceedings, Denver, CO, 2011.   [7] T. A. Laitinen, S. Pivnenko, and O. Breinbjerg, “Theory and Practice of the FFT/Matrix Inversion Technique for Probe-Corrected Spherical Near-field Antenna Measurements with High-Order Probes,” IEEE Trans. Antennas and Prop., Vol. 58, No. 8, August 2010.   [8] T. A. Laitinen, J. M. Nielsen, S. Pivnenko, and O. Breinbjerg, On the Application Range of General High-Order Probe Correction Technique in Spherical Near-Field Antenna Measurements,” in EuCAP 2007 Proceedings, Edinburgh, 2007.   [9] T. A Laitinen, S. Pivnenko, and O. Breinbjerg, “Odd-Order Probe Correction Technique for Spherical Near-Field Antenna Measurements,” Radio Sci., Vol. 40, No. 5, 2005.   [10] J. E. Hansen ed., Spherical Near-Field Antenna Measurements, London: Peregrinus, 1988.

Spherical Near-Field Alignment Sensitivity for Polar and Equatorial Antenna Measurements
Patrick Pelland, Greg Hindman, Daniël van Rensburg, November 2016

Spherical near-field (SNF) antenna test systems offer unique advantages over other types of measurement configurations and have become increasingly popular over the years as a result. To yield high accuracy far-field radiation patterns, it is critical that the rotators of the SNF scanner are properly aligned. Many techniques using optical instruments, laser trackers, low cost devices or even electrical measurements [1 - 3] have been developed to align these systems. While these alignment procedures have been used in practice with great success, some residual alignment errors always remain. These errors can sometimes be quantified with high accuracy and low uncertainty (known error) or with large uncertainties (unknown error). In both cases, it is important to understand the impact that these SNF alignment errors will have on the far-field pattern calculated using near-field data acquired on an SNF scanner. The sensitivity to various alignment errors has been studied in the past [4 - 6]. These investigations concluded that altering the spherical acquisition sampling grid can drastically change the sensitivity to certain alignment errors. However, these investigations were limited in scope to a single type of measurement system. This paper will expand upon this work by analyzing the effects of spherical alignment errors for a variety of different measurement grids and for different SNF implementations (phi-over-theta, theta-over-phi) [7]. Results will be presented using a combination of physical alignment perturbations and errors induced via simulation in an attempt to better understand the sensitivity to SNF alignment errors for a variety of antenna types and orientations within the measurement sphere. Keywords: Spherical Near-Field, Alignment, Uncertainty, Errors. References [1]     J. Demas, “Low cost and high accuracy alignment methods for cylindrical and spherical near-field measurement systems”,  in the proceedings of the 27th annual Meeting and Symposium, Newport, RI, USA, 2005. [2]     S. W. Zieg, “A precision optical range alignment tecnique”, in the proceedings of the 4th annual AMTA meeting and symposium, 1982. [3]     A.C. Newell and G. Hindman, “The alignment of a spherical near-field rotator using electrical measurements”,  in the proceedings of the 19th annual AMTA meeting and symposium, Boston, MA, USA, 1997. [4]     A.C. Newell and G. Hindman, “Quantifying the effect of position errors in spherical near-field measurements”,  in the proceedings of the 20th annual AMTA meeting and symposium, Montreal, Canada, 1998. [5]     A.C. Newell, G. Hindman and C. Stubenrauch, “The effect of measurement geometry on alignment errors in spherical near-field measurements”,  in the proceedings of the 21st annual AMTA meeting and symposium, Monterey, CA, USA, 1999. [6]     G. Hindman, P. Pelland and G. Masters, “Spherical geometry selection used for error evaluation”,  in the proceedings of the 37th annual AMTA meeting and symposium, Long Beach, CA, USA, 2015. [7]     C. Parini, S. Gregson, J. McCormick and D. Janse van Rensburg, Theory and Practice of Modern Antenna Range Measurements. London, UK: The Institute of Engineering and Technology, 2015

Dual-calibration Processing Based on Minimum Weighted Mean Squared Error (MWMSE) in RCS Measurement
Xiaojian Xu,Yongze Liu, November 2015

Dual-calibration was first proposed by Chizever et al. in 1996 [AMTA'1996] and had get wide applications in evaluation of the uncertainty in radar cross section (RCS) measurement and calibration. In 2013, LaHaie proposed a new technique based on jointly minimizing the mean squared error (MMSE) [AMTA'2013] among the calibrated RCS of multiple calibration artifacts, which estimates both the calibration function and the calibration uncertainty for each artifact. MMSE greatly improves the estimation accuracy for the radar calibration function as well as results in lower residual and RCS calibration errors. This paper presents a modified version of LaHaie's MMSE by minimizing the weighted mean squared error (MWMSE) for RCS calibration processing from  multiple calibrator measurements, which is related to the following functions and parameters: the calibration function; the theoretical and measured RCS; the number of calibration artifacts the number of frequency samples and the weight for ith calibration artifacts which may be defined in terms of the theoretical RCS of all the calibration artifacts. For example, if the weight is defined as the inverse of the total theoretical RCS of the ith calibration artifacts for all frequency samples, the error then represents the total relative calibration error instead of an absolute error as in MMSE. MWMSE then means that an optimal calibration function is found in terms of minimum total relative calibration error, which is expected for most applications. Numerical simulation results are presented to demonstrate the usefulness of the proposed technique.

Spherical Geometry Selection Used for Error Evaluation
Greg Hindman,Patrick Pelland, Greg Masters, November 2015

ABSTRACT Spherical near-field error analysis is extremely useful in allowing engineers to attain high confidence in antenna measurement results. NSI has authored numerous papers on automated error analysis and spherical geometry choice related to near field measurement results. Prior work primarily relied on comparison of processed results from two different spherical geometries: Theta-Phi (0 =?= 180, -180 = f = 180) and Azimuth-Phi (-180 =?= 180, 0 = f = 180). Both datasets place the probe at appropriate points about the antenna to measure two different full spheres of data; however probe-to-antenna orientation differs in the two cases. In particular, geometry relative to chamber walls is different and can be used to provide insight into scattering and its reduction.  When a single measurement is made which allows both axes to rotate by 360 degrees both spheres are acquired in the same measurement (redundant). They can then be extracted separately in post-processing. In actual fact, once a redundant measurement is made, there are not just two different full spheres that can be extracted, but a continuum of different (though overlapping) spherical datasets that can be derived from the single measurement. For example, if the spherical sample density in Phi is 5 degrees, one can select 72 different full sphere datasets by shifting the start of the dataset in increments of 5 degrees and extracting the corresponding single-sphere subset. These spherical subsets can then be processed and compared to help evaluate system errors by observing the variation in gain, sidelobe, cross pol, etc. with the different subset selections. This paper will show the usefulness of this technique along with a number of real world examples in spherical near field chambers. Inspection of the results can be instructive in some cases to allow selection of the appropriate spherical subset that gives the best antenna pattern accuracy while avoiding the corrupting influence of certain chamber artifacts like lights, doors, positioner supports, etc. Keywords: Spherical Near-Field, Reflection Suppression, Scattering, MARS. REFERENCES Newell, A.C., "The effect of measurement geometry on alignment errors in spherical near-field measurements", AMTA 21st Annual Meeting & Symposium, Monterey, California, Oct. 1999. G. Hindman, A. Newell, “Spherical Near-Field Self-Comparison Measurements”, Proc. Antenna Measurement Techniques Association  (AMTA) Annual Symp., 2004. G. Hindman, A. Newell, “Simplified Spherical Near-Field Accuracy Assessment”, Proc. Antenna Measurement Techniques Association (AMTA) Annual Symp., 2006. G. Hindman & A. Newell, “Mathematical Absorber Reflection Suppression (MARS) for Anechoic Chamber Evaluation and Improvement”, Proc. Antenna Measurement Techniques Association (AMTA) Annual Symp., 2008. Pelland, Ethier, Janse van Rensburg, McNamara, Shafai, Mishra, “Towards Routine Automated Error Assessment in Antenna Spherical Near-Field Measurements”, The Fourth European Conference on Antennas and Propagation (EuCAP 2010) Pelland, Hindman, “Advances in Automated Error Assessment of Spherical Near-Field Antenna Measurements”, The 7th European Conference on Antennas and Propagation (EuCAP 2013)

Mitigating Effects of Interference in On-Chip Antenna Measurements
Edmund Lee,Edward Szpindor, William McKinzie III, November 2015

Coupling a Chip Antenna to an Antenna Measurement System is typically achieved using a co-planar micro-probe.  This micro-probe is attached to a probe positioner that is used to maneuver the micro-probe into position and land it on the chip. Through this process, the chip is held by a chuck.  Intentional and unintentional radiation from the Chip Antenna will interact with the micro-probe and chuck.  From design conception, the antenna designer must take steps to reduce currents on the chip surface to minimize unintended radiation that will interact with both the measurement setup and the surrounding components of the final design.  Even with good design practices, residual currents will still remain and radiate from the chip.  Combined with intentional radiation from the chip antenna in the upper hemisphere, these radiated fields will impinge on the micro-probe and the probe positioner.  Reflections from both the micro-probe and its positioner will reflect and generate interference patterns with the desired signal in the spherical measurement probe.  In this paper, we evaluate, to first order, these effects by experimentation on two types of micro-probes (ACP & Infinity).  The residual errors are then evaluated using modal filtering tools that further reduce these effects and the results are presented.  Finally the dielectric chuck is modeled in simulation to evaluate the effects of the chuck on antenna patterns at 60 GHz and the results are presented.

A Calibration Method Using Interpolation to Reduce Measurement Errors in Electromagnetic Compatibility Measurements
Vince Rodriguez,Dennis Lewis, November 2015

MIL STD 461 is the Department of Defense standard that states the requirements for the control of electromagnetic interference (EMI) in subsystems and equipment used by the armed forces. The standard requires users to measure the unintentional radiated emissions from equipment by placing a measuring antenna at one meter distance from the equipment under test (EUT). The performance of the antenna at 1m distance must be known for the antenna to measure objects located at this close proximity. MIL STD 461 requires the antennas to be calibrated at 1 m distance using the Society of Automotive Engineers (SAE) Aerospace Recommended Practice (ARP) 958. This SAE ARP 958 document describes a standard calibration method where two identical antennas are used at 1m distance to obtain the gain at 1m for each antenna. In this paper the authors show using simulations that the SAE ARP 958 approach introduces errors as high at 2 dB to the measured gain and AF. To eliminate this problem the authors introduce a new method for calibrating EMC antennas for MIL STD 461. The Method is based on the well-known extrapolation range technique. The process is to obtain the polynomial curve that is used to get the far field gain in the extrapolation gain procedure, and to perform an interpolation to get the gain at 1 m. The results show that some data in the far field must be collected during the extrapolation scan. When the polynomial is calculated the antenna performance values at shorter distances will be free of near field coupling. Measured results for a typical antenna required for emissions testing per the MIL STD 461 match well with the numerical results for the computed gain at 1 m distance. Future work is required to study the use of this technique for other short test distances used in other electromagnetic compatibility standards, such as the 3 m test distance used by the CISPR 16 standard. Keywords: Antenna Calibrations, EMC Measurements, Extrapolation Range Techniques

Predicting the Performance of a Very Large, Wideband Rolled-Edge Reflector
Anil Tellakula,William R. Griffin, Scott T. McBride, November 2015

Achieving a very large quiet zone across a wide frequency band, in a compact range system, requires a physically large reflector with a suitable surface accuracy. The size of the required reflector dictates attention to several important processes, such as how to manufacture the desired surface across a large area and the practicality of transportation and installation. This inevitably leads to the segmentation of the reflector into multiple panels; which must be fabricated, installed, and aligned to each other to conform to the required geometry. Performance predictions must take into account not only the surface accuracy of the individual panels but also their alignment errors. This paper presents the design approach taken on a recent project for a compact range system utilizing a blended rolled-edge reflector that produces a 5 meter quiet zone across a frequency range of 350 MHz to 40 GHz. It discusses the physical segmentation strategy, the fabrication methodology, the intermediate qualification of panels, the panel alignment technique, and the laser-based metrology methodology employed. Performance analysis approach and results will be presented for the geometry as conceived and then for the realized panelized reflector as machined and aligned.

Error Probabilities for Amplitude and Phase Measurements Derived from Signal-to-Noise Ratio
Alexander Geise,Robert Geise, November 2015

Antenna measurement accuracies or error budgets are related to the signal-to-noise ratio of the measurement receiver. Signal-to-noise can be modelled taking two vectors, the intended signal and an interfering signal (i.e. from unwanted multipath propagation or simple noise), which superpose to the actual measured quantity. Although this approach is widely used, it is rarely discussed to its full extent. Instead, the error of the measured quantity is often estimated for high signal-to-noise ratios by applying worst case assumptions to the unwanted part. This excludes not only any statistical nature of the interfering signal but also the probability of the error appearance represented by its standard deviation. Especially when considering several error contributions in a total budget the adequate combination of different error probabilities yields a much more realistic result than adding single worst cases. Within this paper probability functions are analytically derived for measurement errors depending on the signal-to-noise ratio according to the aforementioned model. This yields a more sophisticated analysis of amplitude and phase errors having standard deviations for measured quantities. The confidence intervals of measurement errors are given with respect to varying signal-to-noise ratios. Limitations of the white noise synthesis with uniform phase and amplitude distributions are explained. Further, the applicability of worst case assumptions to the analytical solutions is discussed in the presence of high and low dynamic ranges. The derived expressions are statistically tested using Matlab calculations and compared to measurements with a vector network analyzer. The results are interpreted with respect to practical applications.

Far-Field Reconstruction from Plane-Polar Near-Field Data Affected by Probe Position Errors
Francesco D'Agostino,Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi, November 2015

Among the near-field – far-field (NF–FF) transformation techniques, the one employing the plane-polar scanning has attracted a considerable attention [1]. In this framework, efficient sampling repre­sentations over a plane from a nonredundant number of plane-polar samples, which stays finite also for an unbounded scanning plane, have been developed, by applying the nonredundant sampling representa­tions of the EM fields [2] and assuming the antenna under test (AUT) as enclosed in an oblate ellipsoid [3] or in a double bowl [4], namely, a surface formed by two circular bowls with the same aperture diameter but eventually different lateral bends. These effective representations make possible to accu­rately recover the NF data required by the plane-rectangular NF–FF transformation [5] from a nonredun­dant number of NF data acquired through the plane-polar scanning. A remarkable reduction of the number of the needed NF data and, as a consequence, of the measurement time is so obtainable. However, due to an imprecise control of the positioning systems and their finite resolution, it may be impossible to exactly locate the probe at the points fixed by the sampling representation, even though their position can be accurately read by optical devices. Therefore, it is very important to develop an effective algorithm for an accurate and stable reconstruction of the NF data needed by the NF–FF transformation from the acquired irregularly spaced ones. A viable and convenient strategy [6] is to retrieve the uniform samples from the nonuniform ones and then reconstruct the required NF data via an accurate and stable optimal sampling interpolation (OSI) expansion. In this framework, two different approaches have been proposed. The former is based on an iterative technique, which converges only if there is a biunique correspondence associating at each uniform sampling point the nearest nonuniform one, and has been applied in [6] to the uniform samples reconstruction in the case of cylindrical and spherical surfaces. The latter, based on the singular value decomposition method, does not exhibit this constraint and has been applied to the nonredundant plane-polar [7] scanning technique based on the oblate ellipsoidal modelling. However, it can be conveniently used only when the uniform samples recovery can be split in two inde­pendent one-dimensional problems. The goal of this work is to develop these two techniques for compensating known probe position­ing errors in the case of the nonredundant plane-polar scanning technique using the double bowl modelling [4]. Experimental tests will be performed at the UNISA Antenna Characterization Lab in order to assess their effectiveness. [1] Y. Rahmat-Samii, V. Galindo Israel, and R. Mittra, “A plane-polar approach for far-field construction from near-field measurements,” IEEE Trans. Antennas Prop., vol. AP-28, pp. 216-230, 1980. [2] O.M. Bucci, C. Gennarelli, C. Savarese, “Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples,” IEEE Trans. Antennas Prop., vol. 46, pp. 351-359, 1998. [3] O.M. Bucci, F. D’Agostino, C. Gennarelli, G. Riccio, and C. Savarese, “NF–FF transformation with plane-polar scanning: ellipsoidal modelling of the antenna,” Automatika, vol. 41, pp. 159-164, 2000. [4] O.M. Bucci, C. Gennarelli, G. Riccio, and C. Savarese, “Near-field–far-field transformation from nonredundant plane-polar data: effective modellings of the source,” IEE Proc. Microw. Antennas Prop., vol. 145, pp. 33-38, 1998. [5] E.B. Joy, W.M. Leach, Jr., G. P. Rodrigue and D.T. Paris, “Application of probe-compensated near-field measurements,” IEEE Trans. Antennas Prop., vol. AP-26, pp. 379-389, May 1978. [6] O.M. Bucci, C. Gennarelli, G. Riccio, C. Savarese, “Electromagnetic fields interpolation from nonuniform samples over spherical and cylindrical surfaces,” IEE Proc. Microw. Antennas Prop., vol. 141, pp. 77-84, 1994. [7] F. Ferrara, C. Gennarelli, G. Riccio, C. Savarese, “Far field reconstruction from nonuniform plane-polar data: a SVD based approach,” Electromagnetics, vol. 23, pp. 417-429, July 2003

The DTU-ESA Millimeter-Wave Validation Standard Antenna - Manufacturing and Testing
Oleksiy Kim,Sergey Pivnenko, Olav Breinbjerg, Rolf Jørgensen, Niels Vesterdal, Kim Branner, Peter Berring, Christen Malte Markussen, Maurice Paquay, November 2015

Inter-comparisons of antenna test ranges serve the purpose of validating the measurement accuracy of a given range before it can be qualified to perform certain measurements, which is particularly important for space applications, where antenna specifications are very stringent. Moreover, by verifying the measurement procedures and identifying sources of errors and uncertainties, inter-comparison campaigns improve our understanding of strengths and limitations of different measurement techniques, which, in turn, leads to further improved measurement accuracies. The lesson learned from early comparison campaigns executed by the Technical University of Denmark (DTU) in early 80s on some readily available antennas says that proper inter-comparisons can only be done on dedicated antennas, whose design is driven by stringent requirements on their rigidity and mechanical stability. Furthermore, well-defined reference coordinate systems are essential. These principles have convincingly been proven valid by the VAST-12 antenna designed by DTU in late 80s, which in more than 20 years has demonstrated its usefulness and a long-term value. Currently, the satellite communication industry is actively commercializing the mm-wave frequency bands (K/Ka-bands) in its strive for wide frequency bandwidth and higher bit-rates. The next step is the exploration and exploitation of the Q/V-band. In this scenario, the European Space Agency (ESA) is expanding its portfolio of VAlidation STandard antennas (VAST) into mm-waves to ensure accurate measurements of the next generation communication antennas. This time, ESA demands all four bands (K/Ka/Q/V-bands) to be covered by a single VAST antenna. In this contribution, we report our efforts in designing, fabricating, and testing a new precision tool for antenna test range qualification and inter-comparisons at mm-waves -- the mm-VAST antenna. In particular, we present the details of the antenna mechanical design, fabrication and assembling procedures. The performance verification test plan as well as first measurement results will also be discussed.

CATR Quiet Zone Modelling and the Prediction of "Measured" Radiation Pattern Errors: Comparison using a Variety of Electromagnetic Simulation Methods
Clive Parini,Rostyslav Dubrovka, Stuart Gregson, November 2015

The single-offset compact antenna test range (CATR) is a widely deployed technique for broadband characterization of electrically large antennas at reduced range lengths [1]. The nature of the curvature and position of the offset parabolic reflector as well as the edge geometry ensures that the resulting collimated field is comprised of a pseudo transverse electric and magnetic (TEM) wave. Thus, by projecting an image of the feed at infinity, the CATR synthesizes the type of wave-front that would be incident on the antenna under test (AUT) if it were located very much further away from the feed than is actually the case with the coupling of the plane-wave into the aperture of the AUT creating the classical measured “far-field” radiation pattern. The accuracy of a pattern measured using a CATR is primarily determined by the phase and amplitude quality of the pseudo plane-wave with this being restricted by two main factors: amplitude taper (which is imposed by the pattern of the feed), and reflector edge diffraction, which usually manifests as a high spatial frequency ripple in the pseudo plane wave [2]. It has therefore become customary to specify CATR performance in terms of amplitude taper, and amplitude & phase ripple of this wave over a volume of space, termed the quiet-zone (QZ). Unfortunately, in most cases it is not directly apparent how a given QZ performance specification will manifest itself on the resulting antenna pattern measurement. However, with the advent of powerful digital computers and highly-accurate computational electromagnetic (CEM) models, it has now become possible to extend the CATR electromagnetic (EM) simulation to encompass the complete CATR AUT pattern measurement process thereby permitting quantifiable accuracies to be easily determined prior to actual measurement. As the accuracy of these models is paramount to both the design of the CATR and the subsequent determination of the uncertainty budget, this paper presents a quantitative accuracy evaluation of five different CEM simulations. We report results using methods of CATR modelling including: geometrical-optics with geometrical theory of diffraction [3], plane-wave spectrum [4], Kirchhoff-Huygens [4] and current element [3], before presenting results of their use in the antenna pattern measurement prediction for given CATR-AUT combinations. REFERENCES [1]C.G. Parini, S.F. Gregson, J. McCormick, D. Janse van Rensburg “Theory and Practice of Modern Antenna Range Measurements”, IET Press, 2014, ISBN 978-1-84919-560-7. [2]M. Philippakis, C.G. Parini, “Compact Antenna Range Performance Evaluation Uging Simulated Pattern Measurements”, IEE Proc. Microw. Antennas Propag., Vol. 143, No. 3, June 1996, pp. 200-206. [3]G.L. James, “Geometrical Theory of Diffraction for Electromagnetic Waves”, 3rd Edition, IET Press, 2007, ISBN 978-0-86341-062-8. [4]S.F. Gregson, J. McCormick, C.G. Parini, “Principles of Planar Near-Field Antenna Measurements”, IET Press, 2007.

A Comparison of Antenna Range Polarization Correction Techniques
Justin Dobbins,Jason Jerauld, November 2015

Antenna range calibration is commonly performed with the goal of obtaining the gain of an antenna under test.  The most straightforward calibration procedure makes assumptions about the polarization properties of the range illumination, which can lead to both polarization and gain errors in the measured patterns.  After introducing the concept of polarization correction we describe three published range polarization correction techniques and provide an example of polarization correction applied to a compact antenna test range measurement.  We then discuss the practical aspects of incorporating polarization correction into the range calibration workflow.

The Boresight Roll for Antenna Range Characterization and Diagnostics
Jason Jerauld,Justin Dobbins, November 2015

The boresight roll scan is a simple yet powerful tool for antenna range characterization and diagnostics. In this type of measurement a linearly-polarized antenna with high axial ratio (such as a standard gain horn) is rotated about its mechanical boresight axis while magnitude and phase data are collected. Post-processing of these data provides a wealth of information about the source polarization characteristics, and can also be used to diagnose common problems such as receiver compression, mechanical misalignment, drift, and flexing cables. This paper describes the theory and implementation of the boresight roll scan, and provides examples of how different types of range errors manifest in the processed data.

Effect of Higher Order Modes in Standard Spherical Near-Field Probe Correction
Allen Newell,Stuart Gregson, November 2015

Within the standard scheme for probe-corrected spherical data-processing, it has been found that for an efficient computational implementation it is necessary to restrict the characteristics of the probe pattern such that it contains only azimuthal modes for which µ = ±1 [1, 2, 3].  This first-order pattern restriction does not however extend to placing a limit on the polar index mode content and therefore leaves the directivity of the probe unconstrained.  Clearly, when using this widely utilized approach, errors will be present within the calculated probe-corrected test antenna spherical mode coefficients for cases where the probe is considered to have purely modes for which µ = ±1 and where the probe actually exhibits higher order mode structure.  A number of analysis [4, 5, 6, 7, 8] and simulations [9, 10, 11, 12] can be found documented within the open literature that estimate the effect of using a probe with higher order modes.  The following study is a further attempt to develop guidelines for the azimuthal and polar properties of the probe pattern and the measurement configuration that can be utilized to reduce the effect of higher order spherical modes to acceptable levels. ? [1]     P.F. Wacker, ”Near-field antenna measurements using a spherical scan: Efficient data reduction with probe correction”, Conf. on Precision Electromagnetic Measurements, IEE Conf. Publ. No. 113, pp. 286-288, London, UK, 1974. [2]     F. Jensen, ”On the probe compensation for near-field measurements on a sphere”, Archiv für Elektronik und Übertragung-stechnik, Vol. 29, No. 7/8, pp. 305-308, 1975. [3]     J.E. Hansen, (Ed.) “Spherical near-field antenna measurements”, Peter Peregrinus, Ltd., on behalf of IEE, London, 1988. [4]     T.A. Laitinen, S. Pivnenko, O. Breinbjerg, “Odd-order probe correction technique for spherical near-field antenna measurements,” Radio Sci., vol. 40, no. 5, 2005. [5]     T.A. Laitinen, O. Breinbjerg, “A first/third-order probe correction technique for spherical near-field antenna measurements using three probe orientations,” IEEE Trans. Antennas Propag., vol. 56, pp. 1259–1268, May 2008. [6]     T.A. Laitinen, J. M. Nielsen, S. Pivnenko, O. Breinbjerg, “On the application range of general high-order probe correction technique in spherical near-field antenna measurements,” presented at the 2nd Eur. Conf. on Antennas and Propagation (EuCAP’07), Edinburgh, U.K. Nov. 2007. [7]     T.A. Laitinen, S. Pivnenko, O. Breinbjerg, “Theory and practice of the FFT/matrix inversion technique for probe-corrected spherical near-field antenna measurements with high-order probes”, IEEE Trans. Antennas Propag., vol. 58,, No. 8,  pp. 2623–2631, August 2010. [8]     T.A. Laitinen, S. Pivnenko, “On the truncation of the azimuthal mode spectrum of high-order probes in probe-corrected spherical near-field antenna measurements” AMTA, Denver, November 2012. [9]     A.C. Newell, S.F. Gregson, “Estimating the effect of higher order modes in spherical near-field probe correction”, AMTA 34th Annual Meeting & Symposium, Seattle, WA, October. 2012. [10]  A.C. Newell, S.F. Gregson, “Higher Order Mode probes in Spherical Near-Field Measurements”, EuCAP, Gothenburg, April, 2013. [11]  A.C. Newell, S.F. Gregson, “Estimating the Effect of Higher Order Modes in Spherical Near-Field Probe Correction”, AMTA 35th Annual Meeting & Symposium, Seattle, WA, October. 2013. [12] A.C. Newell, S.F. Gregson, “Estimating the Effect of Higher Order Azimuthal Modes in Spherical Near-Field Probe Correction”, EuCAP, The Hague, April, 2014.

Computational Electromagnetic Modeling of Near-Field Antenna Test Systems Using Plane Wave Spectrum Scattering Matrix Approach
Allen Newell,Stuart Gregson, November 2014

In recent years a number of analyses and simulations have been published that estimate the effect of using a probe with higher order azimuthal modes with standard probe corrected spherical transformation software.  In the event the probe has higher order modes, errors will be present within the calculated antenna under test (AUT) spherical mode coefficients and the resulting asymptotic far-field parameters [1, 2, 3, 4] where the simulations were harnessed to examine these errors in detail.  Within those studies, a computational electromagnetic simulation (CEM) was developed to calculate the output response for an arbitrary AUT/probe combination where the probe is placed at arbitrary locations on the measurement sphere ultimately allowing complete near-field acquisitions to be simulated.  The planar transmission equation was used to calculate the probe response using the plane wave spectra for actual AUTs and probes derived from either planar or spherical measurements.  The planar transmission formula was utilized as, unlike the spherical analogue, there is no limitation on the characteristics of the AUT or probe thereby enabling a powerful, entirely general, model to be constructed.  This paper further extends this model to enable other measurement configurations and errors to be considered including probe positioning errors which can result in ideal first order probes exhibiting higher order azimuthal mode structures.  The model will also be used to determine the accuracy of the Chu and Semplak near-zone gain correction [5] that is used in the calibration of pyramidal horns.  The results of these additional simulations are presented and discussed. Keywords: near-field, antenna measurements, near-field probe, spherical alignment, spherical mode analysis. REFERENCES A.C. Newell, S.F. Gregson, “Estimating the Effect of Higher Order Modes in Spherical Near-Field Probe Correction”, Antenna Measurement Techniques Association (AMTA) 34th Annual Meeting & Symposium, Bellevue, Washington October 21-26, 2012. A.C. Newell, S.F. Gregson, “Higher Order Mode Probes in Spherical Near-Field Measurements”, 7th European Conference on Antennas and Propagation (EuCAP 2013) 8-12 April 2013. A.C. Newell, S.F. Gregson, “Estimating the Effect of Higher Order Modes in Spherical Near-Field Probe Correction”, Antenna Measurement Techniques Association (AMTA) 35th Annual Meeting & Symposium, Columbus, Ohio, October 6-11, 2013. A.C. Newell, S.F. Gregson, “Estimating the Effect of Higher Order Azimuthal Modes in Spherical Near-Field Probe Correction”, The 8th European Conference on Antennas and Propagation (EuCAP 2014) 6-11 April 2014. T.S. Chu, R.A. Semplak, “Gain of Electromagnetic Horns,’’ Bell Syst. Tech. Journal, pp. 527-537, March 1965

Source Reconstruction for Radome Diagnostics
Bjorn Widenberg,Kristin Persson, Mats Gustavsson, Gerhard Kristensson, November 2014

Radome enclose antennas to protect them from environmental influences. Radomes are ideally electrically transparent, but in reality, radomes introduce transmission loss, pattern distortion, beam deflection, etc. Radome diagnostics are acquired in the design process, the delivery control, and in performance verification of repaired and newly developed radome. A measured near or far-field may indicate deviations, e.g., increased side-lobe levels or boresight errors, but the origin of the flaws are not revealed. In this presentation, source reconstruction from measured data is used for radome diagnostics. Source reconstruction is a useful tool in applications such as non-destructive diagnostics of antennas and radomes. The radome diagnostics is performed by visualizing the equivalent currents on the surface of the radome. Defects caused by metallic and dielectric patches are imaged from far-field data. The measured far-field is related to the equivalent surface current on the radome surface by using a surface integral representation together with the extinction theorem. The problem is solved by a body of revolution method of moment (MoM) code utilizing a singular value decomposition (SVD) for regularization. Phase shifts, an effective insertion phase delay (IPD), caused by patches of dielectric tape attached to the radome surface, are localized. Imaging results from three different far-field measurement series at 10 GHz are presented. Specifically, patches of various edge sizes (0.5?2.0 wavelengths), and with the smallest thickness corresponding to a phase shift of a couple of degrees are imaged. The IPD of one layer dielectric tape, 0.15 mm, is detected. The dielectric patches model deviations in the electrical thickness of the radome wall. The results from the measurements can be utilized to produce a trimming mask, which is a map of the surface with instructions how the surface should be altered to obtain the desired properties for the radome. Diagnosis of the IPD on the radome surface is also significant in the delivery control to guarantee manufacturing tolerances of radomes.

Filtering of measurement noise with the 3D reconstruction algorithm
Cecilia Cappellin,Sergey Pivnenko, November 2014

The 3D reconstruction algorithm of DIATOOL, with its higher-order Method of Moments-based implementation, reconstructs extreme near fields and surface currents on arbitrary 3D surfaces enclosing the antenna under test (AUT) from its measured radiated field. This is a valuable analysis and diagnostics tool for the antenna engineer to speed up the antenna prototyping cycle and identify errors in the manufactured AUTs, since the 3D reconstruction can solve a number of problems which traditional microwave holography cannot handle, namely: Accurate and detailed identification of array malfunctioning due to the enhanced spatial resolution of the reconstructed fields and currents Filtering of the scattering from support structures and feed network leakage A number of papers published over the past four years have shown these features in detail. At the same time it was observed that the spherical wave expansion (SWE) of the field radiated by the currents reconstructed by DIATOOL always provides a SWE power spectrum that looks noise-free. This phenomenon was observed for all the antennas on which the 3D reconstruction was applied, and it was explained as being an effect of the 3D reconstruction algorithm, which uses the a-priori information that all sources are contained inside the reconstruction surface. However, since real measured data were always used as input, it was not possible to prove that the SWE power spectrum of the reconstructed currents coincided with the one that would be obtained from noise-free measurements. The purpose of the present paper is thus to investigate in detail the noise filtering capabilities of the 3D reconstruction algorithm of DIATOOL. Models of several antennas, differing in size and type, were set up in GRASP with noise at different levels added to the radiated field. The noisy field was then given as input to DIATOOL and the SWE coefficients and the power spectra of the reconstructed currents were compared with the noise-free results coming from GRASP. Moreover, the effect of the varying noise level on the obtainable resolution was investigated.

Antenna Alignment and Positional Validation of a mmWave Antenna System Using 6D Coordinate Metrology
David Novotny,Joshua Gordon, Jeff Guerrieri, November 2014

Antenna alignment for near-field scanning was typically done at NIST with multiple instruments (theodolites, electronic levels, motor encoders) to align multiple stacked motion stages (linear, rotation).  Many labs and systems are now using laser trackers to measure ranges and perform periodic compensation across the scan geometry.  We are now seeing the use of laser trackers with 3D coordinate metrology to align ranges and take positional data.  We present the alignment techniques and positional accuracy and uncertainty results of a mmWave antenna scanning system at 183 GHz. We are using six degree-of-freedom (6DOF) AUT and Probe measurements (x, y, z, yaw, pitch, roll) to align the AUT and then to align the scan geometry to the AUT.  We are using a combination of 3DOF laser tracker measurements with a combined 6DOF laser tracker/photogrammetry sensor. We combine these measurements using coordinated spatial metrology to assess the quality of each motion stage in the system, tie the measurements of each individual alignment together, and to assess scan geometry errors for position and pointing.  Finally we take in-situ 6DOF position measurements to assess the positional accuracy to allow for positional error correction in the final pattern analysis. The knowledge of the position and errors allow for the correction of position and alignment of the probe at every point in the scan geometry to within the repeatability of the motion components (~30 µm). The in-situ position knowledge will eventually allow us to correct to the uncertainty of the measurement (~15 µm). Our final results show positioning errors on the spherical scan surface have an average error of ~30 µm with peak excursions of ~100 µm. This robust positioning allows for accurate analysis of the RF system stability. Our results show that at 183 GHz, our RF repeatability with movement over 180° orientation change with a 600 mm offset to be less than ±0.05 dB and ±5°.

Effects of a Non-Ideal Plane Wave on Compact Range Measurements
David Wayne,Jeffrey Fordham, John McKenna, November 2014

Performance requirements for compact ranges are typically specified as metrics describing the quiet zone's electromagnetic-field quality. The typical metrics are amplitude taper and ripple, phase variation, and cross polarization. Acceptance testing of compact ranges involves phase probing of the quiet zone to confirm that these metrics are within their specified limits. It is expected that if the metrics are met, then measurements of an antenna placed within that quiet zone will have acceptably low uncertainty. However, a literature search on the relationship of these parameters to resultant errors in antenna measurement yields limited published documentation on the subject. Various methods for determining the uncertainty in antenna measurements have been previously developed and presented for far-field and near-field antenna measurements. An uncertainty analysis for a compact range would include, as one of its terms, the quality of the field illuminating on the antenna of interest. In a compact range, the illumination is non-ideal in amplitude, phase and polarization. Error sources such as reflector surface inaccuracies, chamber-induced stray signals, reflector and edge treatment geometry, and instrumentation RF leakage, perturb the illumination from ideal.

Investigations on Gain Measurement Accuracies at Limited Far-Field Conditions
Engin Gülten,Andreas Drexler, Josef Migl, Jürgen Habersack, November 2014

Driven by the mobile data communications needs of market broadband antennas at the upper frequency bands are already state-of-the-art, e.g. at the Ka-Band. For the characterization of an antenna the antenna gain is one of the major test parameters. This measurement task is already challenging for standard applications at the Ka-Band. However, for the calibration of remote station antennas utilized in high precision test facilities, e.g. the compact range, even higher measurement accuracies are typically required in order to fulfil the overall system performance within the later test facility. Therefore the requirement for this investigation is to improve the measurement set-up and also the steps to get a failure budget which is better than ± 0.15 dB. Every antenna gain measurement technique is affected by required changes in the measurement setup, e.g. the Device under Test (DUT) or the remote station, respectively. This results for example in a variation of mismatch with resulting measurement errors. To determine and compensate the occurred mismatches, the scattering parameters of the involved components have to be measured and be evaluated with a corresponding correction formula. To quantify the effect for the gain measurement accuracy the remaining uncertainty of the mismatch correction values is examined. Another distortion is caused by multiple reflections between the antenna apertures. To reduce this error source, four additional measurements each with a decreased free space distance should be performed. In addition to the common methods, this paper explains in detail an advanced error correction method by using the singular value decomposition (SVD) and compares this to the standard mean value approach. Finally the restricted distance between both antennas within the applied anechoic far-field test chamber has to be analysed very critically and optionally corrected for the far-field gain at an infinite distance in case the measurement distance is fulfilling the minimum distance requirement, only. The paper will discuss all major error contributions addressed above, show correction approaches and verify these algorithms with exemplary gain measurements in comparison to the expected figures.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30