AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Compact Range

Electromagnetic performance study of Scientific-Atlanta's new compact range
W.D. Burnside (The Ohio State University ElectroScience Laboratory),I.J. Gupta (The Ohio State University ElectroScience Laboratory), J. Clerici (The Ohio State University ElectroScience Laboratory), R.C. Rudduck (The Ohio State University ElectroScience Laboratory), November 1986

In this paper a theoretical study is reported of the electromagnetic performance of the new Scientific-Atlanta compact range reflector system. The reflector consists of a 15-foot semicircular parabolic reflector with a 5-foot blended rolled edge added to the circular section and skirt mounted on the base. The performance of this system is examined in terms of its probed near field data at the center (36-feet) and back end (50-feet) of the target zone. The calculated results are for the three-dimensional reflector and include the skirt and blended rolled edge diffracted field as well as the aperture blockage scattering caused by the feed and associated feed/mount structure. The potential target zone size based on these parameters is presented as a function of frequency and desired ripple level requirement. *This work was supported by the National Aeronautic and Space Administration, Langley Research Center, Hampton, Virginia under Grant NSG-1613 with The Ohio State University Research Foundation.

Large compact range quiet zone characteristics
J.D. Huff (Scientific-Atlanta, Inc.), November 1986

Measurements of the Electromagnetic Field in the quiet zone of Scientific-Atlanta's Model 5753 Compact Range are presented. The Model 5753 is believed to be the largest high frequency compact range yet built and measurements demonstrate a quiet zone exceeding 8 ft. high by 12 ft. wide. Both field probe measurements and pattern comparison measurements are presented in the operating frequency range of 1-94 GHz.

Design procedure for a compact range using dual parabolic cylindrical reflectors
M.S.A. Sanad (University of Manitoba),L. Shafai (University of Manitoba), November 1986

The geometry of a dual parabolic cylindrical reflector system and its projection on the plane of symmetry are shown in Fig. 1. It consists of a point source f and two parabolic cylindrical reflectors S1 and S2 with curvatures in two orthogonal planes and of focal lengths F1 and F2, respectively. Alpha is the angle between the generator of the sub-reflector and the main beam direction. It is considered positive if the generator of S1 rotates towards the main reflector and negative if it rotates in the other direction. The feed orientation is specified by the angle gamma which is the angle between the feed axis and the normal from the feed point f to S1. The feed angle is 2f , which is the angle subtended by the sub-reflector in the principal planes. The sub-reflector geometry is selected such that it subtends equal angles from the feed in two orthogonal planes. The main reflector geometry is selected to intercept all reflected rays from the sub-reflector. The projected aperture of the main reflector is rectangular in shape, the sides of which are denoted as A and B. The ratio between these aperture sides is given by [1]. The separation between the two reflectors may be increased by any value delta which results in reducing the aperture dimensions. The feed radiation pattern is assumed to be rotationally symmetric and its electric field distribution in the feed coordinates is represented by cos??. If the feed is vertically polarized in the asymmetric plane (along y-axis), the y and x-components of the aperture field are the co-polar and cross-polar components, respectively. The feed may also be horizontally polarized along the unit vector [sin (?+a) i + cos (?+a) k] in the symmetric plane. In this case the co-polar and cross-polar components of the aperture field are the opposite of the above case.

Comparison between dual cylindrical parabolic and paraboloidal reflectors employed as a compact range
M.S.A. Sanad (University of Manitoba),L. Shafai (University of Manitoba), November 1986

Recently there has been an increasing interest in the compact ranges for antenna measurements. Most of the early attempts used lenses, but recently reflectors have become more acceptable [1]. Both dual cylindrical parabolas and symmetric or offset paraboloidal reflectors have been used as compact ranges. In this paper, the performance of both systems is studied and some of their advantages and shortcomings are presented. For both systems the aperture field distributions, under varying conditions have been determined and compared.

A Useful test body
A. Dominek (The Ohio State University),H. Shamansky (The Ohio State University), R. Barger (NASA Langley Research Center), R. Wood (NASA Langley Research Center), November 1986

The advent of improved compact ranges has promoted the development of a test body, named the almond, to facilitate the measurement of scattered fields from surface mounted structures. A test body should at least have the following three features: (1) provide a very small return itself over a large angular sector, (2) provide an uncorrupted and uniform field in the vicinity of the mounted structure and (3) have the capability to be connected to a low cross-section mount. The almond satisfies the first two requirements by shaping a smooth surface which is continuous in curvature except at its tip. The name almond is derived from its surface similarity to the almond nut. The surface shaping provides an angular sector where there is no specular component. Hence, only low level tip and creeping wave scattering mechanisms are present resulting in a large angular quiet zone. The third requirement is accomplished by properly mounting the almond to a low cross-section ogival pedestal. The mount entails a metal column between the almond and the pedestal covered with shaped absorbing foam. These contoured pieces hide the column and form a blended transition from the almond to the pedestal and yet allow an unobstructed rotation of the almond. Backscatter pattern and swept frequency measurements performed in our compact range illustrate the scattering performance of the almond as a test body. The almond body alone has a backscatter level of -55 dB/m(squared) in its quiet zone. Comparisons of measured hemisphere backscattered returns on the almond are made with those calculated of a hemisphere over an finite ground plane for both principal polarizations for a verification performance test. * This work was supported in part by the National Aeronautics and Space Administration Langley Research Center, Hampton, Virginia under Grant NSG 1613 with the Ohio State University Research Foundation.

Shaped reflector antenna compact range RCS measurement system
J.K. Conn (Harris Corporation),M.L. Foster (Harris Corporation), November 1986

In recent years many of the problems making RCS measurements on a compact range have been addressed [1,2,3]. Factors such as ripple and taper in the target zone have been analyzed and existance of lower level effects such as stray radiation in the chamber. This paper discusses this problem and the way it was addressed in the design of the Harris Model 1606 Compact Range shown in Figure 1, 2 and 3. This range was designed to operate from 2 to 18 GHz with a six foot quiet zone with extension of the frequency range to 95 GHz possible.

Blended surface concept for compact range reflector
W.D. Burnside (Ohio State University ElectroScience Laboratory),A. Dominek (Ohio State University ElectroScience Laboratory), R. Barger (NASA Langley Research Center), November 1985

The compact range has been used for many years to measure directive antenna patterns. More recently, however, there has been increased interest to use the compact range for scattering measurements. In order to provide the proper field illumination for such measurements, the traditional designs must be improved in terms of the stray signals coming from the reflector termination. One attempt to improve the field quality in the measurement zone was to use a rolled edge structure added to the basic parabolic reflector. This improved the system performance but required excessively large structures to meet the system requirements. Thus, a novel blended surface was developed which satisfies the measurement requirements without adding large structures. This new design can provide ripple levels no larger that 1/10th of a dB across the target zone as will be shown in the oral presentation.

Feasibility of a large outdoor compact range
E.B. Joy (Georgia Institute of Technology),O.D. Asbell (Georgia Institute of Technology), R.C. Johnson (Georgia Institute of Technology), November 1985

This paper reports on a study conducted by the Georgia Institute of Technology for the U.S. Army Electronic Proving Ground, Fort Huachuca, Arizona to determine the feasibility of a large (50-foot quiet zone) outdoor compact range located at Fort Huachuca. The range is to be operated over the frequency range from 5 to 100 GHz. The main function of the range would be to measure patterns of low gain antennas mounted on military vehicles and aircraft, to determine whether antenna/vehicle interactions were degrading system performance. The paper presents both the electromagnetic and mechanical rational used as a basis for feasibility. The feasibility study considered many possible compact range configurations including the center fed paraboloidal reflector, the offset fed paraboloidal reflector (both prime feed and subreflector feed) and the dual crossed parabolic cylinder (DCPC) reflectors.

The Compact range RCS measurement system
F. Pasquallucci (Hughes Aircraft Company),J. Paul (Hughes Aircraft Company), J.H. Andrews (Harris Corporation), J.K. Conn (Harris Corporation), L.S. Gans (Harris Corporation), November 1985

The Compact Range RCS Measurement System is comprised of the Harris Shaped Compact Range and the Hughes Short Pulse Coherent RCS Measurement System. The range offers a 10 foot spherical quiet zone with less than ±0.25 dB amplitude ripple, 0.2 dB amplitude taper, and ±2 degrees phase ripple. The short pulse system offers a pulse width as small as 5 nsec with range gate increments of 100 psec minimum. The system has a sensitivity of –70 dBsm without integration and –120 dBsm with 50 dB of coherent integration. System linearity is better that ±0.5 dB over the 70 dB instantaneous dynamic range. The Shaped Compact Range offers nearly 98 percent illumination efficiency with negligible spillover which minimizes the required anechoic chamber size and the amount of absorbing material necessary. The block diagram of the system is shown in Figure 1.

The Compact range as an electromagnetic field simulator
R.C. Rudduck (The Ohio State University ElectroScience Laboratory),M.C. Liang (The Ohio State University ElectroScience Laboratory), T-H. Lee (The Ohio State University ElectroScience Laboratory), W.D. Burnside (The Ohio State University ElectroScience Laboratory), November 1985

Compact range reflector systems have been previously used for far zone measurements in which case the feed is located at the reflector focus. It has been determined that near zone antenna pattern and backscatter measurements are feasible if the feed is appropriately located. Feed location information has been determined as a function of the radius of curvature of the near zone incident wavefront at the center of the measurement volume. Furthermore, numerous field quality data have been calculated. Field quality is defined as the closeness of the near zone field distribution in the measurement volume to the desired uniform spherical wavefront. The capability to measure near zone backscatter data was demonstrated with a 4-inch diameter cylinder, 4 feet in length. These measurements were made at 10 GHz, for a near zone range radius of 50 feet in the Ohio State University compact range facility. The near zone backscatter response for this cylinder was also calculated using a GTD analysis. A comparison of the calculations and measurements demonstrate the feasibility of the compact range for near zone backscatter measurements. This development leads to the consideration of compact range reflector systems for more general electromagnetic field simulations. For example, by employing an array feed, instead of a single feed element, the incident field in the measurement volume can be controlled in a rather flexible way. It is the purpose of this paper to explore some possible simulations.

Estimation of the size, location, and power-density of the 'bright spot' in a compact antenna range
P.N. Richardson (Texas Instruments Incorporated), November 1985

When performing far-field testing on large-aperture antennas, the range length 2D2/? (that is needed to achieve a ‘flat’ phase front at the test plane) is sometimes inconviniently long. In these instances, the compact range of Figure 1 may be used as an alternate. In this range, the spherical wave radiated by the range source antenna is converted to an approximately plane wave by a large parabolic reflector. The antenna to be tested is immersed in this plane wave, at a location that is well within the near-field of the reflector. Also, for many antennas of interest, the reflector is likewise in the near-field of the test antenna, although this is not a requirement. (For those cases where the reflector is in the far field of the test antenna, there is little motivation to use a compact range, since a conventional far-field range of the same length would suffice.)

Focused synthetic array imagery of compact radar range spurious scattering components
E. Walton (The Ohio State University ElectroScience Laboratory),D.R. Koberstein (The Ohio State University ElectroScience Laboratory), November 1985

The Ohio State University (OSU) ElectroScience Laboratory (ESL) utilizes a parabolic reflector as part of the compact range system [1]. It is necessary to probe the plane wave zone of this reflector in order to measure the purity of the plane wave that is generated. Variations in the amplitude or the phase of the signal received by a probe antenna as the probe is moved linearly across the plane wave region indicate deviations from a pure plane wave in the test zone.

Automated data acquisition and analysis system upgrade
H.P. Cotton (Georgia Tech Research Institute),C.H. Green (Georgia Tech Research Institute), D.H. Harrison (Georgia Tech Research Institute), J.L. Estes (Georgia Tech Research Institute), R.A. Gault (Georgia Tech Research Institute), November 1985

This paper is a discussion of the upgrade of an automated antenna pattern data acquisition and analysis system located at the U.S. Army Electronic Proving Ground (USAEPG), Ft. Huachuca, Arizona. The upgrade was necessary as the existing facility was inadequate with respect to frequency coverage, data processing, and measurement speed and accuracy. The upgrade was also necessary in view of USAEPG long range plans to automate a proposed large compact range.

A New antenna test facility at General Electric Space Systems Division in Valley Forge, PA.
R.J. Meier (General Electric Co.), November 1985

This paper describes the new antenna test facility now in operation at General Electric Space Systems Division in Valley Forge, PA. The antenna test facility is located in a new building 155’ x 74’ x 53’ high. It consists of a shielded anechoic room 60’ x 56’ x 35’ high which contains both a Compact Range and a Spherical Near Field Range, instrumented over the Frequency Range 1-100 GHz to perform automatic and manual measurements of antenna characteristics. In addition it provides for a 700’ boresight range accessible through large doors with an RF trans-parent window. A 3-axis positioner can accommodate antenna apertures up to 20’. The facility is used for both, testing of antenna systems and testing of entire spacecraft for electromagnetic compatibility and interference.

Millimeter wave antenna measurements
M. S. Morse (Boeing Aerospace Company), November 1984

Millimeter wave antenna measurements are hampered by a lack of cost effective automated test equipment and the necessity of using unwieldy waveguide set-ups. This paper describes some practical considerations in using readily available test equipment to perform accurate, repeatable antenna measurements. Experimental results of gain, polarization and sidelobe level measurements will be discussed and compared with calculated results.

A Dual shaped compact range for EHF antenna measurements
J.K. Conn (Harris Corporation),C. L. Armstrong (Harris Corporation), L. S. Gans (Harris Corporation), November 1984

A dual offset shaped reflector compact range is described. Improvements over the traditional single reflector, apex-fed compact range are outlined and discussed. A design plan for a dual offset shaped reflector compact range for EHF antenna measurement is presented.

Cylindrical near field test facility for UHF Television Transmitting Antennas
J.A. Donovan (Harris Corporation),E.B. Joy (Georgia Institute of Technology), November 1984

This paper describes a horizontal, cylindrical surface, near-field measurement facility which was designed and constructed in 1984 and is used for the determination of far field patterns from near field measurement of UHF television transmitting antennas. The facility is also used in antenna production as a diagnostic and alignment tool.

A Dual shaped compact range for EHF antenna measurements
J.K. Conn (Harris Corporation),C. L. Armstrong (Harris Corporation), L. S. Gans (Harris Corporation), November 1984

A dual offset shaped reflector compact range is described. Improvements over the traditional single reflector, apex-fed compact range are outlined and discussed. A design plan for a dual offset shaped reflector compact range for EHF antenna measurement is presented.

Complete RF qualification of a large helical space antenna
J. Whelpton (Canadian Astronautics Limited),J. G. Dumoulin (Canadian Astronautics Limited), N. Sultan (Canadian Astronautics Limited), R. Cote (Canadian Astronautics Limited), M. M. Moody (Canadian Astronautics Limited), November 1984

The complete sequence of RF tests required to evaluate the electrical performance of a broad band UHF helix antenna to be used in the zero gravity environment of space is described. The development of an adequate structure which would support the antenna and yet cause no pattern perturbation is mentioned. The test range configuration used, with the UHF antenna inside and anechoic chamber and the source antenna illuminating it through a polyfoam window in one side, is discussed. The problems encountered in taking radiation pattern plots and in making gain measurements using a gain standard near the low frequency limit, 250 MHz, of the antenna test range and the methods utilized to minimize their effect are given in some detail.

Near field RCS measurements
E.B. Joy (Georgia Institute of Technology), November 1984

A planar surface, near-field measurement technique is presented for the near-field measurement of monostatic radar cross-section. The theory, system configuration and measurement procedure for this technique are presented. It is shown that the far field radar cross-section can be determined from the near field measurements. An associate near-field radar cross-section measurement technique is presented for the measurement of bistatic near field radar cross-section. The bistatic technique requires a plane wave illuminator in addition to the planar surface near field measurement system. A small compact range is used as the bistatic illuminator. Bistatic near-field measurements are presented for a simple target.







help@amta.org
2025 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA115x115Logo.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31