AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Analysis

Full-Scale Aircraft Test Facility
J. Miller (Naval Air Development Center), November 1981

A new, major facility is being developed at the NAVAIRDEVCEN to provide a wide range of capabilities for test and evaluation of both antennas and complete avionics systems mounted in full-size fleet aircraft. Under the joint sponsorship of NAVAIR (PMA-253, AIR-5492, and AIR-5334) and NAVAIRDEVCEN, this facility is configured to allow efficient, high speed, high-reliability data acquisition and analysis.

US Army Electronic Proving Ground
US Army, November 1981

The US Army Electronic Proving Ground is in Southeastern Arizona with outlying facilities located throughout Southern Arizona. The Proving Ground is an independent test and evaluation activity under the command of the US Army Test and Evaluation Command. It was established in 1954. EPG’s role in the material acquisition cycle is to conduct development (DT I & II), initial production (first article), and such other engineering (laboratory-type) tests and associated analytical studies of electronic materiel as directed. The results (reports) of these efforts are used by the developer to correct faults, and by Army and DOD decision-makers in determining the suitability of these materiels/systems for adoption and issue. Customer tests to satisfy specific customer requirements and foreign materiel exploitations are also done. EPG is assigned test responsibility for Army ground and airborne (aircraft-mounted) equipment/systems which utilize the electromagnetic spectrum to include: tactical communications; COMSEC (TEMPEST testing included); combat surveillance, and vision equipment (optical, electro-optical, radar, unattended sensors); intelligence acquisition; electronic warfare; radiac; imaging and image interpretation (camera, film, lens, electro-optical); camouflage; avionics; navigation and position location; remotely piloted vehicle; physical security; meteorological; electronic power generation, and tactical computers and associated software. Facilities and capabilities to perform this mission include: laboratories and electronic measurement equipment; antenna pattern measurement’ both free-space and ground-influenced; unattended and physical security sensors; ground and airborne radar target resolution and MTI; precision instrumentation radars in a range configuration for position and track of aerial and ground vehicles; climatic and structural environmental chambers/equipment; calibrated nuclear radiation sources; electromagnetic compatibility, interference and vulnerability measurement and analysis; and other specialized facilities and equipment. The Proving Ground, working in conjunction with a DOD Area Frequency Coordinator, can create a limited realistic electronic battlefield environment. This capability is undergoing significant development and enhancement as a part of a program to develop and acquire the capability to test Army Battlefield Automation Systems, variously called C3I, C4, and/or CCS2 systems. The three principal elements of this capability which are all automated include: Systems Control Facility (SCF), Test Item Stimulator (TIS), and Realistic Battlefield Environment, Electronic (REBEEL). In addition to various instrumentation computers/processors, EPG currently utilizes a DEC Cyber 172, a DEC VAX 11-780, a DEC System 10, and has access to both a CDC 6500 and a 6600. Under the Army Development and Acquisition of Threat Simulators (ADATS) program, EPG is responsible for all non-air defense simulators. The availability of massive real estate in Southern Arizona, which includes more than 70,000 acres on Fort Huachuca, 23,000 acres at Willcox Dry Lake, and 1.5 million acres near Gila Bend, is a major factor in successful satisfaction of our test mission. Fort Huachuca itself is in the foothills of the Huachuca Mountains at an elevation of approximately 5,000 feet and has an average annual rainfall of less than 15 inches. Flying missions are practical almost every day of the year. The Proving Ground is ideally situated between two national ranges and provides overlapping, compatible instrumentation facilities for all types of in-flight test programs. The clear electromagnetic environment, the excellent climatic conditions, and the freedom from aircraft congestion make this an unusually fine area for electronic testing. The Proving Ground consists of a multitude of sophisticated resources, many of them unique in the United States, which are an integral part of the USAEPG test facility and have resulted from an active local research and development effort over a 28-year period.

Antenna pattern data acquisition
W.C. Wilkinson (Space Antenna Techniques, Inc.), November 1980

This data acquisition and pattern analysis system uses a standard set of Scientific Atlanta antenna-pattern-taking equipment as the basic operational gear. A Tektronix 4051 or 4052 Graphic System is used as a controller to operate the S/A gear and to obtain and store output data in digital format. The TEK 4051 does this by use of the IEEE General Purpose Interface Bus (GPIB), to which three interface boxes are connected. These three: • HP-59306A Relay Actuator • Model 4883 ICS Instrument Coupler • HP-3455A Digital Voltmeter message or digitize the S/A data and put it on the GPIB lines.

A Laboratory application of structured analysis and design
K.L. Marvin (USAF), November 1980

The changeover of personnel in some laboratories has historically resulted in high costs for software maintenance. These high costs can be traced to poor documentation of the analysis and design process during the software development. This paper illustrates the structured analysis and design methodology used to analyze, design, and implement software to automatically test performance of an Air Force advanced development communications system. The requirements definition and preliminary design are accomplished using activity models to represent the functions performed during the test. The development of the activity models is the vehicle used to do a thorough requirements definition, while the resulting functional architecture represents an understandable preliminary design. The detailed design is formed using structure charts which better reveal system characteristics that illustrate design quality. The structure charts also facilitate the coding of the software to be implemented. The combination of activity models and structure charts provide the detailed documentation of the software analysis and design phases that are required to ensure ease of maintenance, broadening of understanding, and most importantly, a complete development package that can be passed on to a new user. These features ultimately result in a significant reduction in long term maintenance costs.

Empass - an airborne emission measurement system
J.A. Copley, November 1980

Currently the Fleet lacks a quantitative description of their electromagnetic (EM) capabilities and vulnerabilities. A ship’s mission can be seriously degraded because of unsatisfactory performance of EM systems due to various factors found in the operational environment. In addition, a ship can become vulnerable to a potential enemy by inadequate emission control (EMCON) of EM energy. The EMPASS measurement platform is capable of collecting and analyzing three-dimensional emission data in the operational environment. The word EMPASS is the acronym of Electromagnetic Performance of Aircraft and Ship Systems. EMPASS consists of a calibrated, special equipped, measurement platform situated on an EP-3A aircraft with complementary ground based data reduction and analysis facilities. The products of the EMPASS program are the effectiveness evaluation of operational EM systems, development of the criteria for the most effective tactical use of EM systems, and the providing of the capability to conduct RDT&E in the operational EM environment. This paper presents a description of the EMPASS capabilities and the results of measurements of some representative EM systems used in the fleet.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30