AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Accuracy

Error analysis in RCS imaging
H.F. Schluper (March Microwave Systems, B.V.), November 1988

In the last few years, the interest in Radar Cross Section (RCS) measurements has increased rapidly. The development of high-performance Compact Ranges (CR) has made possible measurements on large targets down to very low RCS levels (below -70 dBsm). RCS imaging is a powerful tool to determine the location of scattering sources on a target. The response of the target is measured as a function of the frequency and aspect angle. A two-dimensional Fourier transform then gives the reflection density as a function of down-range and cross-range. If the response is measured vs. azimuth and elevation, even a complete 3-D image is possible. For high-resolution imaging (large bandwidth, wide aspect-angle span) a direct 2-dimensional Fourier transform gives rise to errors caused by the movement of the scatterers during the measurement. These errors can be corrected by applying a coordinate transformation to the measured data, prior to the Fourier transforms. This so called focused imaging allows further manipulation of measured data. However, the measurement accuracy can be a limiting factor in application of these techniques. It will be shown that the Compact Range performance as well as positioning accuracy can cause serious errors in high-resolution imaging and thus in interpretation of processed data.

Applications of autoregressive spectral analysis to high resolution time domain RCS transformations
E. Walton (The Ohio State University ElectroScience Laboratory), November 1988

Modern analysis techniques of radar scattering data or radar cross section (RCS) data often include transformation to the time domain for the purpose of understanding the specific scattering mechanisms involved or to isolate or identify specific scattering points. The classic technique is to transform from the frequency domain to the time domain using an inverse (Fast) Fourier Transform (IFFT). Often, however, the scattering centers are too close together to resolve or the requirement for accuracy in the measurement of the differential time delay is too high given the IFFT inverse bandwidth. This paper presents a technique for determining the time domain response of a radar target by processing the data using modern autoregressive (AR) spectral analysis. In this technique, the scattering from a radar target in the high frequency regime is shown to be autoregressive. This paper will show examples using the maximum entropy method (MEM) of Burg.

Transfer efficiency of the compact range
R.W. Kreutel (Scientific-Atlanta, Inc.), November 1988

Over the years formulations have been developed which provide an implicit measure of transfer efficiency of the compact range. Reasonable accuracy has been demonstrated for both antenna and RCS measurement applications. In general, however, these formulations require specific design details pertaining to the collimating reflector. In this note a more general formulation is examined in which efficiency is explicitly expressed in terms familiar to antenna engineers and which do not directly involve reflector parameters. Applications of this formulation are presented.

The Panelized approach to compact range construction
J. Cantrell (Harris Corporation), November 1988

The development of the Harris 1640 compact range required significant technical advances in developing a method of constructing a 70 foot reflector to a 0.005 inch RMS operational surface accuracy. A panelized approach is believed to be the only practical way to achieve this level of accuracy. Four technology areas had to be developed, adapted to this use, or have their current limits extended. A method was required for reducing the RF shaping data to individual panel contours. The reflector has no axis of symmetry thus each panel has a unique contour and the description of each contour requires complex mathematical interpolation. A new fabrication technique was needed to produce 0.002 inch RMS panels. Positioning and initially aligning the panels would require the adaptation of multiple theodolite techniques. The final setting of the panels would then require the use of a photogrammetric measurement system, the most accurate method available.

A Planar near-field range positioner
J.H. Bearden (Georgia Tech Research Institute),A.D. Dugenske (Georgia Tech Research Institute), November 1988

The Systems and Techniques Laboratory of the Georgia Tech Research Institute is producing a PC-controlled near-field planar scan system which will allow phase measurements more accurate than one degree at 10 GHz in a 10 foot by 12 foot plane. This high degree of accuracy will be accomplished with microstep motors, absolute linear encoders, and a helium neon laser compensator. The probe positioning system consists of a tower traveling across a set of linear rails. A probe moves vertically on the tower, allowing operator pre-described measurements to be taken. The system is designed to accept data as the probe moves vertically, then indexed horizontally for complete plane coverage.

Calibrating antenna standards using CW and pulsed-CW measurements and the planar near-field method
D. Kremer (National Bureau of Standards),A. Repjar (National Bureau of Standards), November 1988

For over a decade the National Bureau of Standards (NBS) has used the planar near-field method to accurately determine the gain, polarization and patterns of antennas either transmitting or receiving cw signals. Some of these calibrated antennas have also been measured at other facilities to determine and/or verify the accuracies obtainable with their ranges. The facilities involved have included near-field ranges, far-field ranges, and compact ranges. Recently, NBS has calibrated an antenna to be used to evaluate both a near-field range and a compact range. These ranges are to be used to measure an electronically-steerable antenna which transmits only pulsed-cw signals. The antenna calibrated by NBS was chosen to be similar in physical size and frequency of operation to the array and was also calibrated with the antenna transmitting pulsed-cw. This calibration included determining the effects of using different power levels at the mixer, the accuracy of the receiver in making the amplitude and phase measurements, and the effective dynamic range of the receiver. Comparisons were made with calibration results obtained for the antenna transmitting cw and for the antenna receiving cw. The parameters compared include gain, sidelobe and cross polarization levels. The measurements are described and some results are presented.

Antenna pattern correction for range reflections
L. Jofre (Georgia Institute of Technology),E.B. Joy (Georgia Institute of Technology), R.E. Wilson (Georgia Institute of Technology), November 1987

When performing antenna pattern measurements on far-field antenna test ranges or in anechoic chambers, one of the main problems concerning the pattern accuracy is range reflections. Previous works dealing with this have been limited to the one-dimensional case.

Photogrammetric measurement of antenna reflectors
C.S. Fraser (Geodetic Services, Inc.), November 1987

The application of analytical photogrammetry to the measurement of microwave antenna reflectors is discussed. The basic concepts of photogrammetric triangulation are outlined and accuracy considerations are reviewed. Recent developments in close-range photogrammetric systems, which have greatly enhanced both the accuracy and economy of antenna mensuration, are briefly discussed and advantages of the photogrammetric approach are highlighted. Three recently conducted antenna measurement projects are reviewed.

Precision panel fabrication and measurement
D.D. Nafzger (Harris Corporation),J. Cantrell (Harris Corporation), November 1987

A key element in the performance of the Harris compact range is that the mathematical shaping of the main and subreflector maximizes the percentage of the total radiated energy collimated in the quiet zone. This extra measure of performance doesn't come without an impact on other areas of the design. Specifically, the use of non-geometric shapes means that for large reflectors, where the surface must be segmented for fabrication accuracy, the shape of each segment is unique. Thus, the traditional method of forming each reflector segment, or panel, on a hard surface tool, or bonding fixture, becomes prohibitively expensive for large systems that consist of over a hundred panels in the two reflectors. The development of an adjustable bonding fixture that can be accurately set to the mathematically defined shape for each panel has made the Harris approach to compact ranges achievable. The use of high accuracy coordinate axis measuring machines to refine and verify the surface of each panel has then made the approach producible. The measurement machines have critical axis accuracies of .0005 inch that provide the capability for verifying .001 inch RMS panel accuracies.

Evaluation of Anechoic Chambers
J. Schoonis (Grace-Emerson & Cuming), November 1987

This paper describes methods commonly used by anechoic chamber manufacturers to characterize chamber performance. Test procedures depend first on the purpose of the test; second on the purpose of the anechoic chamber and third on the amount of information required. Most anechoic chambers are built for a specific use. In order to prove its design, the test will be done accordingly. In most anechoic chambers one measures the reflectivity level because this is a measure for the accuracy on future measurements when the chamber is in operation. Anechoic chambers can vary from Antenna Pattern Test Chambers to Radar Cross Section Test Chambers, Electronic Warfare Simulation Chambers and Electro Magnetic Compatibility Test Chambers. Each type of chamber will have its specific evaluation technique. Some techniques can be done by the chamber user himself. Other methods need some special equipment that will or can only be used for that particular test method. Some customers want to do their own calibration on a regular basis. They can purchase this special equipment from the chamber manufacturer, if necessary. More complicated methods make use of computer controlled equipment. The data required can be taken in the chamber. This can be done relatively fast. All sorts of information about the chamber characteristics can be obtained in a later stage in a different format by use of the right software. This paper gives possible evaluation methods for different types of anechoic chambers. Detailed information about each method can be obtained from Emerson & Cuming.

Antenna diagnosis using microwave holographic techniques on a far-field range
E.P. Ekelman (COMSAT Laboratories), November 1987

The holographic antenna measurement system developed for the COMSAT Labs far-field range was tested with various antennas including axis-symmetric reflector antennas, offset single and dual reflector antennas, and phased-array antennas. Numerous examples which demonstrate the value of holographic measurement as an antenna diagnostic tool are presented. Microwave holography utilizes the Fourier transform relation between the antenna radiation pattern and the antenna aperture electromagnetic field distribution. Complex far-field date are collected at sample points and a Fourier transform is performed to give amplitude and phase contours in the antenna aperture plane. These contours facilitate reflector antenna diagnosis. The feed illumination and blockage pattern are provided by the amplitude distribution. The aperture phase distribution allows simple determination of deviations in the reflector surface and feed focusing. For phased-array antennas, the contours provide a measure of the complex element excitation. Measurement system parameters including pointing accuracy, phase stability, and measurement dynamic range were studied and refinements implemented to increase speed, accuracy, and resolution of the contour plots. To prevent aliasing errors, sampling criteria were explored to determine the optimum parameter ranges. For most antenna positioners, the antenna center is displaced from the rotation center. The importance of properly accounting for this displacement is discussed in the final section.

Near-field bistatic RCS measurement at BDM
R. Rogers (The BDM Corporation),E. Farr (The BDM Corporation), November 1987

The techniques of near-field antenna pattern measurement can be extended to near-field RCS measurement. The motivation for doing so is precisely the same as that for near-field antenna measurements; i.e., the convenience of an indoor antenna range, and an improvement in accuracy. Although the near-field measurement problem is solvable in principle in a manner analogous to the near-field antenna problem, it requires a significantly larger amount of time to take the necessary data, and to subsequently process the data to obtain useful quantities. BDM is currently involved in an on-going program to evaluate the feasibility of near-field bistatic RCS measurements. At the time of this writing, a complete set of mathematics has been formulated to handle the probe correction and data processing. The hardware has been built, software development is near completion, and the analysis of canonical scattering objects has been completed. Experimental data soon to be taken for these objects will be presented. It is hoped that the technique will prove to be a practical approach to RCS measurements.

Antenna calibrations using pulsed-CW measurements and the planar near-field method
A. Repjar (National Bureau of Standards),D. Kremer (National Bureau of Standards), November 1987

For over a decade the National Bureau of Standards has utilized the Planar Near-field Method to accurately determine antenna gain, polarization and antenna patterns. Measurements of near-field amplitudes and phases over a planar surface are routinely obtained and processed to calculate these parameters. The measurement system includes using a cw source connected to an accessible antenna port and a two channel receiver to obtain both amplitude and phase of the measurement signal with respect to a fixed reference signal. Many radar systems operate in a pulsed-cw mode and it is very difficult if not impossible to inject a cw signal at a desired antenna port in order to calibrate the antenna. As a result it is highly desirable to obtain accurate near-field amplitude and phase data for an antenna in the pulsed-cw mode so that the antenna far-field parameters can be determined. Whether operating in the cw or pulsed-cw modes, one must be concerned with calibrating the measurement system by determining its linearity and phase measurement accuracy over a wide dynamic range. Tests were recently conducted at NBS for these purposes using a precision rotary vane attenuator and calibrated phase shifter. Such tests would apply not only to measurement systems for determining antenna parameters but also to systems for radar cross section (RCS) measurements. The measurement setup will be discussed and results will be presented.

A Low Cost Spherical Near-Field Range Facility
J.R. Jones (Scientific-Atlanta, Inc.),C.E. Green (Scientific-Atlanta, Inc.), D.W. Hess (Scientific-Atlanta, Inc.), K.H. Teegardin (Scientific-Atlanta, Inc.), November 1987

In any type of electromagnetic measurements, the ideas of "precision and accuracy" and "low cost" tend to be mutually exclusive. At Scientific-Atlanta, for instance, production testing of antenna products is conducted in low cost miniature "anechoic chambers" which are fabricated in-house. These "chambers" are actually medium-sized to large (64-200 cubic feet) rectangular boxes with absorber attached to their walls. They are usually equipped with single axis positioners at one or both ends, and their usefulness is limited to the measurement of axial ratio on low gain small antennas.

Laser corrected field probe measurements of large compact ranges
J.W. Jones (Harris Corporation), November 1987

As the operating frequencies of compact range antennas increase, the accuracy of the field probes used to characterize their performance must also increase. Obtaining the required accuracy through mechanical design becomes more and more difficult as the size of the area to be probed increases. This paper describes the use of a laser measurement system to sense the probe's mechanical displacements thereby allowing corrections of compact range measurement. The relatively simple laser alignment system is well-suited for compact range probing in which accuracy is much more critical in the Z direction than the X-Y direction.

Optimized collimators-theoretical performance limits
B. Schluper (March Microwave Systems B.V.),J. Damme (March Microwave Systems B.V.), V.J. Vokurka (March Microwave Systems B.V.), November 1987

Over the last five years a considerable attention has been paid to further developments of Compact Antenna Test Ranges for both antenna and RCS measurements. For many applications, these devices proved to be more attractive than outdoor ranges or near-field/far-field transformation techniques. On the other hand, accurate operation at very low or very high frequencies can cause considerable difficulties. It is the aim of this paper to describe the theoretical limitation of collimating devices, in particular for low frequencies. For this purpose, an idealized collimator will be defined. Using the spectral components analysis a comparison of achievable accuracy will be made between collimators and outdoor ranges. Theoretical limits in the accuracy for RCS measurements will be computed for all applicable frequencies. Finally, a comparison will be made between the experiments on a dual-reflector Compact Antenna Test Range and theoretically achievable limits. Representative targets, like cylinders and rectangular plates have been used for experimental investigation. These data will also be presented.

A Method of making fast high accuracy polarization measurements
G.B. Melson (Scientific-Atlanta, Inc.),J.J. Anderson (Scientific-Atlanta, Inc.), November 1986

A method is presented for making fast multi-frequency high accuracy polarization measurements using a digital computer. This paper will provide a brief review of the IEEE standard polarization definitions, their applicability to the three antenna method, and finally a fast two antenna method. [1] The fast two antenna method uses a dual polarized orthomode sampling antenna along with a standard antenna whose polarization is known. The dual polarized sampling antenna is calibrated before the test data is acquired using the polarization standard in two different orientations 90 degrees apart. Once the calibration data is acquired the dual polarized orthomode antenna is used as a sampling antenna for the AUT. Since the sampling antenna is dual polarized the AUT polarization data can be obtained rapidly for many frequencies since neither antenna is required to rotate. This method has been used to acquire polarization data for over 500 frequencies in less than 20 seconds.

On the use of the HP-8510 network analyzer for antenna pattern measurements
R. Balaberda (National Research Council, Canada),S. Mishra (National Research Council, Canada), November 1986

Enhanced accuracy in antenna pattern measurements using the HP-8510 is possible by using a novel calibration procedure. By circumventing antenna dispersion, this procedure leads to better resolution of multipath responses and thus increases the effectiveness of gated measurements. Measured patterns of a dipole antenna are presented to illustrate the effectiveness of this procedure.

An Automated antenna measurement system using the HP8510
D.J. Markman (Flam & Russell, Inc.),R.E. Hartman (Flam & Russell, Inc.), November 1986

An automated antenna measurement system using the HP8510 is described. The system controls the HP8510, associated signal source, and antenna positioner, to provide a fully integrated, automated test facility. Automation speeds and enhances testing by implementing the following features: - Multiple frequency pattern measurements in a single cut of the pedestal. - Patterns with rotating linear polarization - Automatic pedestal control - Storage and presentation of fully documented test data. - Storage and recall of test routines These features complement the premier microwave receiver available today, the HP8510 which offers: - Continuous frequency coverage from .045 to 26.5 GHz - Unparalleled measurement accuracy - 80 dB dynamic range - Time domain gating These features are integrated through software developed using modern software management techniques to form a system which is state of the art in measurement performance, operator interface, and software life cycle supportability.

Reduction of near-field techniques duration
J.C. Bolomey (Ecole Superieure d'Electricité),B. Cown (Georgia Institute of Technology), D. Picard (Ecole Superieure d'Electricité), G. Fine (Ecole Superieure d'Electricité), M. Mostafavi (Ecole Superieure d'Electricité), November 1986

Near-field measurement techniques are widely used today for antenna far-field pattern characterization. Since the 60's, much has been done concerning accuracy. The three main coordinate systems, planar, cylindrical, and spherical have been investigated. probe corrections have been introduced [1] - [6].







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30