AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Absorber

A Modern, Indoor Far-Field Extrapolation Range
Dale Canterbury, Corey Garner, William Dykeman, November 2018

Prior literature in the subject area of far-field antenna measurements has demonstrated an extrapolation technique to isolate and correct the errors due to near-zone proximity effects as well as multi-path range reflections, thus allowing data to be collected at distances much less than the conventionally defined far-field criteria. This paper describes a modern, indoor, far-field antenna measurement range specifically designed to support this extrapolation technique. A multi-axis positioning system featuring a mobile horn tower capable of motion along the chamber Z-axis is emphasized. High-speed RF instrumentation and advanced software control support the full automation of the extrapolation method. This contemporary approach is demonstrated, and measurement examples are provided for an X-band slotted waveguide array. The resultant far-field gain calculations are also compared to similar data extracted using near-field scanning techniques.

Resurfacing the NASA Langley Experimental Test Range Reflector
Ron Schulze, Matthew Bray, Nathanael Flores-Palomera, Chris Vandelinder, Richard Boucher, George Szatkowski, Larry Ticatach, Angelo Cavone, Matthew Ayers, Michael Draszt, John Rooks, , , ,, November 2018

An ambitious resurfacing campaign was launched in late 2017 to correct for large reflector surface distortions present at the NASA LaRC Experiment Test Range (ETR) in support of performing Europa Clipper flight High Gain Antenna (HGA) measurements at X-and Ka-band frequencies. The effort was successful as the worst case peak-to-peak amplitude ripple was reduced from 4.0-dB to 1.5-dB across the 4.1-meter quiet zone.

Uncertainty Analysis Technique for Planar Field-Probing Measurements and Quiet-Zone Simulations of a Compact Antenna Test Range
T M Gemmer, D Heberling, November 2018

The performance of a compact antenna test range is evaluated by field-probing measurements of the quiet zone. The comparison between the simulated and measured data, however, is misleading due to the finite measurement accuracy and the limited nature of the numerical model. In order to allow a comparison, the uncertainty terms of the field-probing measurements and the numerical model are identified based on the National Institute of Standards and Technology 18-term uncertainty analysis technique. The individual terms are evaluated with simulations or measurements using the equivalent-stray-signal model. Bearing the differences between the model and the actual measurements in mind, the electrical field can be estimated precisely within the overlapping region of both uncertainty budgets.

Common Microwave Absorbers Evaluations in W-band (75-100 GHz)
Zhong Chen, October 2017

Understanding absorber performance in the W band (75-100 GHz) has become increasingly important, especially with the popular use of W band radars for automotive range detections. Commercial absorber performance data is typically available only to 40 GHz. Measurements performed in the W band in anechoic chambers are often under the assumptions that high frequency absorber data can be extrapolated from the data below 40 GHz. In this paper, we provide a survey of common microwave absorbers in the W band. It shows that the extrapolated data from the lower frequencies are not accurate. Absorber analysis models for low frequencies such using homogenization concept are no longer valid. This is because, for the millimeter wave, microstructures of the foam substrate become important, and the dimensions of the pyramids are much greater than the wavelengths. We examine performance variations due to parameters, such as carbon loading, shape, and thickness of the absorbers. We will also show how paint on the absorber surface might affect the absorber reflectivity, and if the common practice of black-tipping (leaving the tip of the absorbers unpainted) is an effective technique to alleviate paint effects.

Accuracy Enhancement of Ground Reflection Range Measurements Using a Two-Element Array Source Antenna
Artem Saakian, Frederick Werrell, October 2017

One of the sources of the measurement errors in outdoor antenna test ranges, when testing from VHF through C-Band, is the ground reflected signal between probe antenna and the antenna under test (AUT). Those errors are due to antenna(s) relatively large beam width(s) at these frequencies, especially when AUT is placed on the large platform such as an aircraft. If reflected wave is not eliminated by the use of absorbers at the reflection point or redirection by the use of diffraction fences, then the range operates as a ground reflection range (GRR), where the reflected signal creates a lobbing pattern when the direct and reflected signals are overlaying in- and out-of-phase as a function of position and frequency, causing undesirable amplitude variations at the test point. Ground reflections may be a major cause of error for GRR measurements when testing large antennas or antennas mounted on large structures which require a large displacement of the AUT during the antenna pattern collection process. A concept of using vertically positioned two-element array probe antenna (source antenna) to suppress ground-reflected signals in GRR-s is presented in this article. Suppression is achieved by pointing first null of the probes gain pattern towards the reflection point on the ground. All analytical evaluations are based on geometrical optics approach. Comparison of the proposed approach to a traditional single-element probe (source) antenna approach, demonstrates a significant improvement in measurement accuracy. Estimates and verifications of analytical evaluations are based on Computational Electromagnetics (CEM) modeling tool such as WIPL-D code. Simulations are performed in the VHF frequency band (200 MHz).

An RCS-based Wall-reflectivity Technique - The First On-site Test Results
Amin Enayati, Joachim Wesemael, October 2017

Among different measurement techniques for the wall reflectivity, an RCS_based technique has been implemented and test results are reported. For most of the anechoic chambers, the factory acceptance test and a quality-control check is sufficient for the customers to be sure that the absorbers used to line their chamber are good enough. In some cases, a quiet-zone reflectivity measurement will certify that the chamber yields the quietness as needed for the specific application of the customer. This last technique is mostly used in the far-filed ranges. However, in some anechoic chambers, e. g. some compact ranges, the customer wants to know the effect of the installation and the shipment on the final absorber installed in the room. That is why, they ask for a wall reflectivity measurement to see the reflectivity of the absorbers after being installed. The main problem to be solved when talking about wall reflectivity is the un-wanted clutter in the room which needs to be compensated for. Last year at AMTA 2016, we have introduced a clutter-removal technique to reduce the unwanted shattering levels. That was supported by some lab implementations and accordingly some limitations in the implementation. This paper, explains the result of the first practical on-site test done in an anechoic chamber. Many different points in the chamber have been tested and a detailed discussion of the results are brought to view.

Truncation Error Mitigation in Free-Space Automotive Partial Spherical Near Field Measurements
Francesco Saccardi, Francesca Rossi, Lucia Scialacqua, Lars Foged, October 2017

Modern cars are equipped with a large number of antennas which are strongly integrated with the car. A full characterization of the radiating properties of the entire vehicle is thus typically required. In order to characterize the radiating properties of the installed antennas, large measurement systems accommodating the full vehicle are required. As in standard antenna measurements, a full spherical near field (NF) scanning around the car is desirable in order to perform an accurate NF/FF transformation. However, due to size and weight of the Device Under Test (DUT) and/or economic factors a full spherical scan is often unfeasible. For this reason, truncated spherical scanners (such as hemispherical) are typically involved. A classic solution is to combine hemispherical scanning with a metallic ground plane which is assumed to be a Perfect Electric Conductor (PEC) in the NF/FF transformation. However, the PEC ground-plane is less representative of realistic automotive environments such as asphalt that is strongly dielectric. A further drawback is the strong scattering from the large metallic ground-plane which highly compromises the NF measurements at low frequencies. In many situations, it is thus desirable to perform the NF measurements in a condition similar to free-space by using absorber materials on the floor. It is well-known that standard NF/FF transformations applied to partial spherical acquisitions generates the so called truncation errors. Such errors are stronger at lower frequencies due to the lower number of spherical modes for fixed DUT size. Moreover, typical antennas for automotive applications are generally low directive thus, the impact of the truncation on the measured pattern is often non-negligible. In such cases advanced post-processing techniques must be involved to mitigate the effect of the truncation errors. In this paper two truncation error mitigation techniques will be compared when applied to automotive measurements performed in free-space conditions. The first technique is an iterative process which at each iteration applies a modal filtering based on the size of the DUT. The second technique is based on the computation of the equivalent currents of the DUT over an equivalent surface which acts as spatial filter. Both techniques give excellent mitigation performance with different computational effort. The good agreement between two different techniques effectively defining the lower bound for what can be successfully mitigated by post processing techniques.

Verification of Spherical Mathematical Absorber Reflection Suppression in a Combination Spherical Near-Field And Compact Antenna Test Range
Stuart Gregson, Clive Parini, Allen Newell, October 2017

This paper presents the results of a recent study concerning the computational electromagnetic simulation of a spherical near-field (SNF) antenna test system. The new plane-wave scattering matrix approach [1, 2] allows many of the commonly encountered components within the range uncertainty budget, including range reflections, to be included within the model [3]. This paper presents the results of simulations that verify the utility of the spherical mathematical absorber reflection suppression (S-MARS) technique [3, 4] for the identification and subsequent extraction of artifacts resulting from range reflections. Although past verifications have been obtained using experimental techniques this paper, for the first time, corroborates these findings using purely computational methods. The use of MARS is particularly relevant in applications that inherently include scatterers within the test environment. Such cases include instances where a SNF test system is installed within an existing compact antenna test range (CATR) as is the configuration at the recently upgraded Queen Mary University of London (QMUL) Antenna Laboratory [5, 6]. Thus, this study focuses on this installation with results of CEM simulations and actual range measurements being presented. The method enables a quantitative measure of the levels of suppression offered by the MARS system. References A.C. Newell, S.F. Gregson, “Estimating the Effect of Higher Order Modes in Spherical Near-Field Probe Correction”, Antenna Measurement Techniques Association (AMTA) 34th Annual Meeting & Symposium, Bellevue, Washington October, 2012. A.C. Newell, S.F. Gregson, “Computational Electromagnetic Modelling Of Spherical Near-Field Antenna Test Systems Using Plane Wave Spectrum Scatting Matrix Approach”, Antenna Measurement Techniques Association (AMTA) 36th Annual Meeting & Symposium, Tucson, Arizona, October, 2014. C.G. Parini, S.F. Gregson, J. McCormick, D. Janse van Rensburg “Theory and Practice of Modern Antenna Range Measurements”, IET Press, 2014, ISBN 978-1-84919-560-7. G.E. Hindman, A.C. Newell, “Reflection Suppression in a large spherical near-field range”, Antenna Measurement Techniques Association (AMTA) 27th Annual Meeting & Symposium, Newport, RI, October. 2005. A.D. Olver, C.G. Parini, “Millimetre-wave Compact Antenna Test Range”, JINA Nice, November 1992. C.G. Parini, R. Dubrovka, S.F. Gregson, "CATR Quiet Zone Modelling and the Prediction of 'Measured' Radiation Pattern Errors: Comparison using a Variety of Electromagnetic Simulation Methods" Antenna Measurement Techniques Association (AMTA) 37th Annual Meeting & Symposium, Long Beach California, October 2015.

Comparing Predicted Performance of Anechoic Chambers to Free Space VSWR Measurements
Vince Rodriguez, October 2017

Abstract— Indoor antenna ranges must have the walls, floor and ceiling treated with RF absorber. The normal incidence performance of the absorber is usually provided by the manufacturers of the materials; however, the bi-static or off angle performance must also be known. In reference [1], a polynomial approximation was introduced that gave a prediction of the reflected energy from pyramidal absorber. In this paper, the approximations are used to predict the quiet zone (QZ) performance of several anechoic chambers. These predictions are compared with full wave analysis performed in CST Suite®. A 12 m wide by 22 m long with a height of 12 m chamber was analyzed at 700 MHz. The QZ performance was compared to the polynomial predictions showing a difference of less than 2.2 dB. In addition, comparisons are made with measurements of the QZ performance of anechoic chambers. Measurements performed per the free space VSWR method of three different chambers are compared with the prediction that uses the polynomials presented in [1]. The chambers are: a 18 m long by 11.5 m wide and 11.5 m in height operating from 100M MHz to 12 GHz; a 13.41 m by6.1 m by 6.1 m operating from 800 MHz to 6 GHz; and a 14 m long by 4.12 m by 4.27 m operating in the X band. The results show that the polynomial approximations can be used to give a reasonably accurate and safe prediction of the QZ performance of anechoic chambers. [1] V. Rodriguez and E. Barry, “A polynomial approximation for the Prediciotn of Reflected Energy from Pyramidal RF Absorbers,” Proceedeings of the 38th annual Symposium of the Antenna Measurement Techniques Association (AMTA 2016), pp. 155–160, October 2016.

On the Disadvantages of Tilting the Receive End-Wall of a Compact Range for RCS Measurements
Vince Rodriguez, October 2017

Abstract— Tilting the receive end wall of a compact range anechoic chamber to improve Radar Cross-Section (RCS) measurements has been a tool of the trade used since the earliest days of anechoic chambers. A preliminary analysis using geometrical optics (GO) validates this technique. The GO approach however ignores the backscattering modes from the reflected waves from a field of absorber. In this paper, a series of numerical experiments are performed comparing a straight wall and a tilted wall to show the effects on both the quiet zone and the energy reflected back towards the source antenna. Two Absorber covered walls are simulated. Both walls are illuminated with a standard gain horn (SGH). The effects of a wall tilted back 20° are computed. The simulations are done for 72-inch long absorber for the frequency range covering from 500 MHz to 1 GHz. The ripple on a 10 ft (3.05 m) quiet zone (QZ) is measured for the vertical wall and the tilted wall. In addition to the QZ analysis a time-domain analysis is performed. The reflected pulse at the excitation antenna is compared for the two back wall configurations Results show that tilting the wall improves measurements at some frequencies but causes a higher return at other frequencies; indicating this method does not provide a broadband advantage. Keywords: Anechoic Chamber Design, Radar Cross Section Measurements, Geometrical Optics

International Facility Comparison Campaign at L/C Band Frequencies
Maria Saporetti, Lars Foged, Yasar Kurdi, Antonis Alexandridis, Cosme López, Fernando Las-Heras, Manuel Castañer, October 2017

Comparison activities in which a number of measurement facilities compare their measurements of the same antenna in a standard configuration have become important for documentation and validation of laboratory expertise and competence. It is also mandatory to have regular participation in such activities to obtain and maintain accreditations like ISO 17025. The main goal of the facility comparison activities is to provide a formal opportunity for the participants to validate and document their achieved measurement accuracy and procedures by comparison with other facilities. Since 2004, comparison campaigns with different scopes have been conducted on antenna measurements within various European activities: EurAAP (European Association on Antennas and Propagation) supported by the European Cooperation in Science and Technology (COST) in the programs ASSIST IC0603 and VISTA IC1102 and the 6th EU framework network “Antenna Centre of Excellence” (ACE). Results of these activities have led to improvement in antenna measurement procedures and protocols in facilities and contributions to standards. Due to the direct benefits to the participants, the activities have been very successful and partial results have been published in IEEE referenced papers during the years. The large amount of measured data available have fostered fruitful discussion and research on the improvement of standard procedures, protocols and tools for performance verification like the facility comparison campaigns. As a further benefit, the campaigns have initiated a dialogue among different laboratories throughout Europe and USA and is spreading into Asia. In this paper we report on a recent EurAAP facility comparison campaign involving a medium gain ridge horn, MVI-SH800. The campaign covers measurement in the L and C band frequencies in different facilities in Europe and USA. The horn is equipped with an absorber plate to enhance the correlation in different facilities by reducing the sensibility to the measurement set-up. The results of 8 facilities will be shown in terms of gain and directivity patterns, equivalent noise level and the declared uncertainty will be checked against the whole set of measurements.

Antenna Near-Field Measurement within Electrically Close Distance Using a Novel Probe Design
Chung-Huan Li, Cheng-Jian Lin, Rong-Chung Liu, October 2017

When antenna near-field (NF) measurement within small electrical distance is needed, such as miniaturization of the measurement device or measurement of a low-frequency DUT, the coaxial cables connected to the probes will significantly but inevitably disturb the fields. The measurement accuracy is therefore compromised. In this paper, a novel probe design is proposed by replacing coaxial cable with optical fiber to minimize the disturbance. In this design, the RF-over-Fiber (RoF) technology is applied in signal transmission with Vertical-Cavity Surface-Emitting Laser (VCSEL) and photodiode (PD) as the transmitter and receiver respectively. The VCSEL is powered via optical fiber with Power-over-Fiber (PoF) technology. A power laser emits optical power which is guided by optical fiber to illuminate a miniaturized photovoltaic (PV) element. The PV element serves as a voltage source for the VCSEL. A spherical, multi-probe, NF measurement design with 60cm-diameter is built for portable DUT operated between 0.6 to 2.6GHz. There are 64 probes installed along the two arches for both theta and phi polarizations, so mechanical rotation is needed only on phi axis. Thanks to the high RF transparency of the probes, there is no need to wrap absorbers around the probes to shield the cables. Another spherical NF measurement prototype is also under development. It is half-spherical (10m-diameter) for large DUT, such as vehicles, with low frequency antenna, namely, 70MHz to 600MHz. At this frequency range, to the best of our knowledge, there is no effective and accurate way to measure the radiation performance because the disturbance on the EM fields by the coaxial cables is obviously not negligible.

Broadband Additive Spiral Antenna
Tommy Lam, October 2017

As part of the Lockheed Martin (LM) Additive Manufacturing (AM) Initiative, the Rotary Mission System antenna group has been developing a new and improved Additive Spiral Antenna (ASA) for both transmit and receive applications. This is a collaboration effort between LM engineering and LM manufacturing for a low cost and high performance antenna for manyultra-wide band(UWB) applications in both military and commercial market sectors. Unlike other conventional spiral designs, thisrecently emerging Additive Manufacturing capabilities allow extra spiral antenna miniaturizations without additional gain bandwidth performance penalties. This is achieved by leveraging unique low cost AM abilities to form complex and thus much more efficient 3D shapes to increase spiral antenna radiation efficiency, approaching the Chu’s gain bandwidth limitation. An initial prototype ASA was designed and tested in 2016 and showed very encouraging results. The measured ASA performance indicated nearly the same antenna performance as our current conventional production spiral antenna having multi-decade frequency band performance. More importantly, the ASA aperture size was significantly reduced by more than 50% with excellent transmit and receive gain efficiency and power handling capabilities. This paper will describe this ASA prototype design approaches and antenna near field and far field compact range measurement results along with material characterizations to demonstrate Additive Manufacturing technology can enhance antenna performance that otherwise not realizable with conventional fabrications. In addition, an integrated optimum balun length electromagnetic band gap (EBG) cavity design further reduces the antenna depth by over 70% will be presented. This is realized by use of high power and high temperature honeycomb absorbers in conjunction to electromagnetic band gap (EBG) cavity design for achieving high efficiency and low cavity profile, with total antenna volume reduction by nearly 3x. Some discussions will be provided for solving high thermal issues associated with ASA’s transmit capabilities.

A Radar Echo Emulator for the Evaluation of Automotive Radar Sensors
Domenic Belgiovane, Chi-Chih Chen, J. Landon Garry, November 2016

Automatic emergency braking (AEB) and collision imminent braking are beginning to be implemented by major automotive manufactures. AEB systems utilize automotive radar sensors operating in the 77 GHz frequency band for target detection. These said systems are capable of providing warning directly to the vehicle driver and when necessary apply automatic emergency braking. The effectiveness of such systems need to be accurately tested using standards and test procedures that are yet to be agreed upon among international automobile industry and government agencies. The Euro NCAP vehicle target (EVT) is the current European standard for AEB testing scenarios. The main goal of this research effort was developing a compact W-band radar echo emulator (REE) to be used for evaluating automotive pre-collision systems (PCS) operating in the 77 GHz frequency band. The proposed REE is capable of receiving radar signals from the PCS radar mounted on the vehicle under test (VUT) and then transmits modified radar signals back to PCS radar bearing the similar signatures (temporal, spectral, and pattern) as the Euro NCAP Vehicle Target (EVT). REE eliminates the need for the front vehicle target to produce radar responses which is currently accomplished with complicated arrangement of RF absorbers and reflectors as in the EVT and other vehicle surrogates. The adoption of REE means that the vehicle target only needs to bear optical signatures similar to an actual vehicle, and thus can be made with a much simpler balloon structure. Measurements present for the characterization of the Euro NCAP EVT over distance as well as the calibrated radar cross section (RCS). From this simply target model the REE echo power is empirically determined. The REE solution to PCS testing scenarios offers an easily adaptable return power various targets can be emulated with a single module.

Improved clutter removal for measuring wall reflectivity using the RCS technique
Marc Dirix, Amin Enayati, Joachim van Wesemael, Pawel Bajurko, November 2016

Absorber lining is an important part of an indoor antenna measurement chamber design. During the design phase different absorber types are selected for minimizing the expected reflection from given locations in the chamber. By the time of installation, these absorbers have already been measured as part of the production quality control. The question however arises if after installation, these absorbers still meet the requirements of the design.  The free-space-VSWR [1] measurement technique is a method to assess the overall reflectivity of the chamber at a certain location, i.e. quiet-zone reflectivity, but cannot be easily limited to measure the reflectivity of a single wall. In this work the RCS technique [2] is revised. The reflection of the wall is measured using a quasi-monostatic RCS setup which is mounted on a linear sliding system. The linear sliding system is positioned perpendicular to the wall. After measuring at several positions the measurement results are shifted in distance such that the reference target or wall add coherently and clutter or other walls destructively. Using this technique it will be shown that the reflectivity of an absorber-lined wall can be determined during installation where not all walls or floor have been covered yet.  [1]         J. Appel-Hansen, “Reflectivity level of radio anechoic chambers,” IEEE Trans. Antennas Propag., vol. 21, no. 4, pp. 490–498, Jul. 1973. [2]         G. Cottard and Y. Arien, “Anechoic Chamber Measurement Improvement,” Microw. J., no. March, 2006.

Implementation of a VHF Spherical Near-Field Measurement Facility at CNES
Gwenn Le Fur, Guillaume Robin, Nicolas Adnet, Luc Duchesne, Daniel Belot, Lise Feat, Kevin Elis, Anthony Bellion, Romain Contreres, November 2016

Needs of antenna measurements at low VHF range require the development of specific facilities. Costs saving could be found by reusing existing chambers and extending the frequency band down to few tens of MHz, especially if the implementation of such a system is performed in undersized chambers with already existing absorbers. CNES began such an adaptation in the 2000’s by adding a VHF measurement probe (80-400 MHz) in their CATR chamber which allows performing spherical single probe Near Field measurement thanks to the existing positioner. In the past four years, intensives studies have been led to reduce uncertainties onto measurements results and to wide again the lower frequency down to 50 MHz. Major error terms were identified and both a new measurement probe and post processing tools have been designed and implemented. This paper focuses on the hardware and software upgrades. Details will be first provided on the mechanical upgrades of the probe positioner, aiming to improve the accuracy and the repeatability of the positioning, as well as the ergonomic usage for saving installation time. A dedicated reference antenna in gain and polarization has been developed and validated. Such reliable reference antennas at this frequency range are a key point to reduce uncertainties onto measurement results. Finally, optical tool for aligning the measurement probe and the AUT as well as the post processing tool will be presented.

Inverse Scattering and Imaging of Compensated Compact Ranges by Plane Wave Analysis
Engin Gülten, Josef Migl, Thomas Eibert, November 2016

The Compensated Compact Range (CCR) 75/60 of Airbus DS GmbH is the state-of-the art indoor test facility for real-time RF measurements of satellite antennas within a frequency range from 1 to 200 GHz. The CCR is composed of a two reflector system, a main reflector and a sub-reflector, to create a cross-polar-compensated plane wave in the test zone. However, even such a sophisticated design has residual cross-polar components due to the contribution of the range feed, edge diffraction from the reflector system, as well as from the serrations and imperfect absorbers. To improve and optimize the RF performance of the CCR, detailed EM simulation models are developed in order to solve the related forward scattering problem [1, 2, 3]. In spite of this it is also of great importance to analyze the CCR in a different perspective to gain insight into the CCR. To this aim, an approach based on plane wave spectrum analysis combined with inverse scattering and imaging techniques is proposed. The proposed approach firstly computes the plane wave spectrum of the measured or simulated data taken in the quite zone by using 2D Fast Fourier Transform (FFT).  Then, the measured or simulated field is back-propagated by using an inverse scattering approach. By considering the geometrical shape information of the main reflector, the current distribution on the reflector is imaged. The reconstructed images help to clearly identify the effects of. Appropriate windowing is applied to the computed plane wave (angular) spectrum in order to locate and image the echoes. Based on the investigation carried out with the proposed approach, it turns out that the area of the main reflector should be increased to reduce the disturbing impact of the serrations. This investigation also shows that increasing the size of the sub-reflector does not help to improve the plane wave uniformity of the fields in the test zone.  In order to test the proposed method against the experimental data, which is not in a suitable format for FFT, the measured data is interpolated to equally spaced data in a Cartesian coordinate system. The experimental results, which are obtained by processing both co and cross polar measurements, show very good agreement with the results obtained by using synthetic data.      References [1] A. Geise, J. Migl, J. Hartmann, H-J. Steiner, “Full Wave Simulation of Compensated Compact Ranges at Lower Frequencies”, AMTA 33th Annual Symposium, 16 – 21 October 2011 in Englewood Colorado, USA. [2] C. H. Schmidt, A. Geise, J. Migl, H-J. Steiner, H.-H. Viskum, “A Detailed PO/ PTD GRASP Simulation Model for Compensated Compact Range Analysis with Arbitrarily Shaped Serrations”, AMTA 35th Annual Symphosium, 6 – 11 October 2013 in Colombus Ohio, USA. [3] O. Borries, P. Meincke, E. Jorgensen, C. H. Schmidt, “Design and Validation of Compact Antenna Test Ranges using Computational EM”, AMTA 37th Annual Symphosium , 11 – 16 October 2015 in Long Beach, CA, USA.

A Polynomial Approximation for the Prediction of Reflected Energy from Pyramidal RF Absorbers
Vince Rodriguez, Edwin Barry, November 2016

Indoor antenna ranges must have the walls, floor and ceiling treated with RF absorber. The normal incidence performance of the absorber is usually provided by the manufacturers of the materials, however, the bi-static or off angle performance must also be known. Some manufacturers provide factors at discrete electrical thickness for a discrete range of incident angles. This approximation is based on the curves presented in [1]. In reference [2], a polynomial approximation was introduced. In this paper, a more accurate approximation is introduced. Pyramidal RF absorber is modeled using CST’s frequency domain solver. The numerical results are compared to results from other numerical methods. The highest reflectivity of the two principal polarizations for a given angle of incidence and thickness of material is calculated. Different physical thickness pyramids are modeled. Once the worst case reflectivity is calculated, a polynomial curve fit is done to get a set of equations that provide the bi-static performance for absorber as a function of angle of incidence and thickness of material. The equations can be used to predict the necessary RF absorber to treat the walls of an indoor range.

A study of the Low-frequency Coaxial Reflectometer measurement procedure for evaluation of RF absorbers’ reflectivity
Anoop Adhyapak, Zhong Chen, November 2016

This paper presents a study on the low-frequency coaxial reflectometer measurement procedure. A time domain gating algorithm is developed by ETS-Lindgren and the results are validated after comparing to the Keysight 8753-time domain algorithm. The in-house time gating algorithm is then applied to the simulated reflectivity results of absorbers in reflectometer to the simulation results of the same absorbers with plane wave excitation using finite element method numerical computation. Based on the simulation results, the operable upper frequency limit and the minimum length of the straight coaxial section for the reflectometer are suggested. The errors introduced during measurement due to higher order modes are studied and the permissible limit for the errors is analyzed. The different higher order modes and their effects on field distribution are studied. The impact of the non-uniform field distribution on the absorber reflectivity measurement is also discussed.

A Guided-Wave Setup for Measuring the High-Power Handling Capability of Pyramidal Absorbers
Amin Enayati, November 2015

A guided-wave setup has been introduced for evaluating the high-power capability of the pyramidal absorbers. The details of the setup has been explained and its pros and cons has been noted. The major benefit of the proposed setup compared to the ones found in the literature is its need for lower amount of power when a pyramidal absorber is to be illuminated by a specific power density. That means, the high-power tests done using the proposed setup are cheaper compared to the tests performed with the setups formerly proposed in the literature.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31