AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Polarization

Three Antenna Polarization Measurement Revisited
Michael Francis,Ronald Wittmann, November 2020

Three-antenna methods [1] are fundamental to modernantenna metrology. They enable the simultaneous determination of the on-axis polarizations and gains of three unknown antennas. For example, on-axis characterization of a probe antenna is necessary for the accurate far-field measurement of test antenna transmitting and receiving functions. Recently after renovation of antenna ranges, NIST has beeninvolved in an internal program to re-certify its polarizationcharacterization services. While reviewing the theory [2], werealized that a small modification to the standard algorithmcould improve the accuracy of the polarization determinationin many cases. Three-antenna techniques measure the antennas in pairswith one antenna of each pair rotating about its axis (Figure1). The ideal form of the measured signal is very simple (6). Previous methods [3][8], take an economical approach in which a minimal number of measurements are used to extractthe polarization parameters from the model. Some allow forthe averaging of multiple determinations to improve results. We propose, on the other hand, to use the discrete Fourier transform (DFT) to isolate the exp (¤i?) behavior in the data[9], [10]. The pair-polarization ratios (8) are easily computedfrom this transform. References [9] and [10] only came tolight after our analysis was completed. Rather the drop theproject, we have decided to offer this note as a tutorial andto call attention to what appears to be an under-appreciatedapproach to polarization measurement. All of the above methods work well when the error signalis small. Otherwise, the global nature of Fourier interpolationis expected to yield advantages over any local analysis. This hypothesis is supported by the simulations discussed below. Data were simulated for a number of combinations of axialratio, tilt angle, and sense of polarization. Noise was added atvarious levels. NOTE: The abstract refers to a figure, equations, and references not included in the abstract for brevity but which are available upon request

Single Antenna Dual Circularly-Polarized Chipless RFID Tag Reading Methodology
Chao Liu,Katelyn Brinker,Reza Zoughi, November 2020

RFID technology can be classified as active, passive, or chipless based on tag design. While active and passive tags rely on electronics to modulate and return the irradiating signal, chipless tags rely on geometry to produce a distinct signal which is viewed in the time-, frequency-, or spatial-domain. Within the field of chipless RFID, frequency-domain tags are the most popular and different design approaches with different polarization schemes have emerged. Primarily, these tag design approaches can be categorized as linearly polarized (LP), orientation insensitive (OI), and cross-polarizing. This diversity in tag designs leads to a variety of requirements for reader antennas and also leads to current reader antennas being non-universal (i.e., reader antennas can only be used for specific types of tags rather than all tags). LP and cross-polarizing tags require that the reader antennas have their polarization be perfectly aligned with that of the tag, as a small tag rotation with respect to the reader can greatly affect the response. Cross-polarizing tags additionally require either a dual-polarized reader antenna or a bistatic measurement setup. While specialized chipless RFID reader antennas and bistatic reading schemes have been developed, there are still limitations with these approaches, such as requiring tag/reader polarization alignment, hardware complexity, mutual coupling, and other related issues in bistatic setups. Tag interrogation with circular polarization (CP), however, accommodates the polarization diversity of different tag designs, while also relaxing the tag/reader relative alignment requirements. This work proposes a novel chipless RFID tag reading methodology that utilizes a single existing dual CP X-band (8.2-12.4 GHz) septum polarizer antenna as a universal (i.e., all types of tags) frequency-domain reader antenna that can generate and receive both right-hand and left-hand CP, as well as LP (through mathematical manipulation). This antenna has been optimized for this application and its specifications are provided. Additionally, through post processing the rotation offset of LP tags can be determined, a capability which can then be used for rotation sensing. To demonstrate the tag reading methodology and the rotation determination capabilities of the method, simulation and measurement results are presented for LP and OI tags.

Adding Phase to the Rotating-Source Antenna Polarization Measurement Method
Jerome Massiot, October 2019

The rotating-source measurement method is usually described as an amplitude only measurement method and the axial ratio is the only characteristic that can be measured. The article illustrates how adding a phase measurement allows to get the sense of polarization and to calculate the circular partial gains over a full cut-plane of the antenna under test. Simulations and a measurement example are shown.

Comparison and contrast of the antenna calibration methods of ANSI and CISPR
Doug Kramer, October 2019

This is a brief comparison between the two recently released documents that detail the methods used for the calibration of antennas intended for use in measuring electromagnetic compatibility.

2D RCS Prediction from Multistatic Near-Field Measurements on a Plane by Single-Cut Near-Field Far-Field Transformation and Plane-Wave Synthesis
Shuntaro Omi, Michitaka Ameya, Masanobu Hirose, Satoru Kurokawa, October 2019

A near-field far-field transformation (NFFFT) technique with a plane-wave synthesis is presented for predicting two-dimensional (2D) radar cross sections (RCS) from multistatic near-field (NF) measurements. The NFFFT predicts the FF of the OUT illuminated by each single source, then the plane-wave synthesis predicts the FF of the OUT each illuminated by each plane-wave by synthesizing the FFs given in the NFFFT step. The both steps are performed in the similar computational procedure based on a single-cut NFFFT technique that has been proposed previously. The method is performed at low cost computation because the NF and source positions are required only on a single cut plane. The formulation and validation of the method is presented.

A Straightforward Dynamic Range Error Analysis
Marion Baggett, Brett T Walkenhorst, October 2019

The significant measurement standards in the antenna measurement community all present suggested error analysis strategies and recommendations. However, many of the factors in these analyses are static in nature in that they do not vary with antenna pattern signal level or they deal with specific points in the pattern, such as realized gain, side lobe magnitude error or a derived metric such as on-axis cross polarization. In addition, many of the constituent factors of the error methods are the result of analyses or special purpose data collections that may not be available for periodic measurement. The objective of this paper is to use only a few significant factors to analyze the error bounds in both magnitude and phase for a given antenna pattern, for all levels of the pattern. Most of the standards metrics are errors of amplitude. However, interest is increasing in determining phase errors and, hence, this methodology includes phase error analysis for all factors.

CATR Quiet Zone Depth Variation
Marion C Baggett, Brett T Walkenhorst, October 2019

The traditional characterization of the quiet zone for a CATR is to perform field probe scans perpendicular to the range axis at one or more depths of the quiet zone, usually front, middle and back. There is usually no attempt to compare the peak signals across the field probe scans. In recent years, users of CATRs have been using these devices at lower and lower frequencies, sometimes below the lowest frequency that provides the specified performance for the CATR. It is recognized that as a CATR is used at lower and lower frequencies compared to its optics, the quiet zone quality will degrade. The purpose of this study was to create a quiet zone depth variation model to characterize the variation, particularly for low frequencies. The model was to treat the CATR as an antenna aperture and apply a power density versus distance model. It is well known that the extreme near field of an aperture is oscillatory at distances up to approximately 10% of the far-field distance, at which point the power density begins to follow the Fraunhofer approximation. The optics of a CATR place the quiet zone well within the oscillatory zone, indicating that the field will vary through the depth of the quiet zone. This variation will decrease with increasing frequency as the far-field distance for the CATR increases with frequency. The model has been compared to a simulation in GRASP and experimental data collected on a CATR.

Measurement of RF Absorber at Large Angles of Incidence using Spectral Domain Transformations
Vince Rodriguez, Brett Walkenhorst, Jorgen Bruun, October 2019

Pyramidal RF absorber, widely used in indoor antenna ranges, is designed to minimize reflectivity by creating an impedance transform from free space to the impedance of the absorber material. The pyramidal shape provides this transition quite well at normal incidence. It has been shown in [1] that pyramidal RF absorber performs very well up to angles of incidence of about 45 degrees off-normal, but at wider angles of incidence, the performance degrades significantly. Unfortunately, it is very difficult to perform RF absorber measurements at large oblique incidence angles. In such measurements, the reflected path and the direct path between the antennas are very close in length, making it difficult to use time-domain gating techniques to eliminate the direct coupling. In this paper, a novel approach for performing oblique RF absorber measurements is introduced based on spectral domain transformations. Preliminary measurements using this technique have been compared to RF simulations. Results appear to indicate that this approach is a valid way to perform RF absorber reflectivity measurements at highly oblique incidence angles.

Measurements of Non-Metallic Targets for the Austin RCS Benchmark Suite
Jon T Kelley, Ali E Yilmaz, David A Chamulak, Clifton C Courtney, October 2019

A simulation-supported measurement campaign was conducted to collect monostatic radar cross section (RCS) data as part of a larger effort to establish the Austin RCS Benchmark Suite, a publicly available benchmark suite for quantifying the performance of RCS simulations. In order to demonstrate the impact of materials on RCS simulation and measurement, various mixed-material targets were built and measured. The results are reported for three targets: (i) Solid Resin Almond: an almond-shaped low-loss homogeneous target with the characteristic length of ~10-in. (ii) Open Tail-Coated Almond: the surface of the solid resin almond's tail portion was coated with a highly conductive silver, effectively forming a resin-filled open cavity with metallic walls. (iii) Closed Tail-Coated Almond: the resin almond was manufactured in two pieces, the tail piece was coated completely with silver coating (creating a closed metallic surface), and the two pieces were joined. The measured material properties of the resin are reported; the RCS measurement setup, data collection, and post processing are detailed; and the uncertainty in measured data is quantified with the help of simulations.

A Compact Reconfigurable Millimeter-Wave Antenna Measurement System Based Upon an Industrial Robot
Jason Jerauld, Felix Yuen, Nathan Landy, Tom Driscoll, October 2019

Echodyne has recently completed and qualified a new millimeter-wave antenna measurement system for characterization of beam-steering antennas such as our Metamaterial Electronic Steering Arrays (MESAs). Unlike most far-field systems that employ a standard Phi/Theta or Az/El positioner, we use a six-axis industrial robot that can define an arbitrary AUT coordinate system and center of rotation. In different operational modes, the robot is used as an angular AUT positioner (e.g., Az/El) or configured for linear scan areas. This flexible positioning system allows us to characterize the range illumination and quiet zone reflections without modification to the measurement system. With minor modifications, the system could also be used in a planar-near field configuration. Range alignment can be easily performed by redefining the coordinate system of the AUT movement in software. The approximate 5.2-meter range length is within the radiating near-field of many arrays of interest, so we employ spherical near-field (SNF) correction when necessary, using internally-developed code. Specialty tilted absorber was installed in the chamber to improve quiet zone performance, over standard absorber treatment for similar aspect ratio ranges. Narrower ranges often have specular reflections that exceed 60° and benefit from the specialty tilted absorber designed to reduce the angle of incidence. We present an overview of the measurement system and some initial measurement data, along with lessons learned during design and integration. I. MEASUREMENT SYSTEM OVERIVEW A 7.3m x 3.7m x 3.7m footprint was allocated for the new R&D millimeter-wave antenna measurement chamber. After accounting for structural considerations, the final chamber interior dimensions are 7.1m(L) x 3.45m(W) x 3.35m(H) and the final range length (separation between range antenna and quiet zone center) is about 5.2 m. Table 1 lists the high-level goals of the measurement system are listed in. Table 1. Echodyne R&D chamber goals. Parameter Goal Frequency range 12-40 GHz, with provisions up to 80 GHz Polarization Dual-linear switched or simultaneous AUT positioner Azimuth-over-Elevation and linear scanning Quiet zone size 0.4m(L) x 0.4m(W) x 0.4m(H) Side lobe uncertainty +/-1 dB for-20 dB sidelobe Figure 1 shows the dimensions of the rectangular chamber, which is lined with the special absorber design described in Section II. Figure 2 shows an overview of the measurement system. The RF subsystem consists of a 4-port vector network analyzer (VNA), a Gigatronics GT-1050A power amplifier, a directional coupler (placed after the amplifier) to provide the VNA reference signal and a MVG QR18000 dual-polarized closed boundary quad-ridged horn [1] as the range antenna. This setup provides continuous frequency coverage from 12 to 40 GHz. External frequency converter modules can be used to extend the range further into millimeter wave. Horizontal and vertical polarization are acquired simultaneously by measuring three receiver channels (B, C & R1) and calculating the ratios B/R1 and C/R1 which remove the effects of amplifier drift (such as temperature coefficient). The range antenna is mounted to a rotary stage to allow direct measurement of Ludwig-III polarization if desired (versus polarization synthesis in post-processing). The AUT positioner described in Section III is a six-axis industrial robot that provides both angular azimuth-over-elevation and linear scanning with high-accuracy. Linear scanning allows planar near-field measurements in addition to the quiet zone evaluation shown in Section IV. The 5.2 m range length is within the radiating near-field of many arrays of interest, especially at higher frequencies. For example, even a relatively small (140 mm) AUT would have a 22.5° phase taper across at 40 GHz. We use the spherical near-field measurement correction [2] described in Section V to obtain true far-field patterns in the Az/El coordinates described by the robot motion. Figure 1. Rectangular chamber dimensions (in inches).

Personal Near-field System
Dan Slater, October 2019

In 1987 the author built the world's first Personal Near-field antenna measurement System (PNS). This led to the formation of Nearfield Systems Inc. (NSI) a company that became a major manufacturer of commercial near-field antenna measurement systems. After leaving NSI in 2015 several new personal antenna measurement tools were built including a modern updated PNS. The new PNS consists of a portable XY scanner, a hand held microwave analyzer and a laptop computer running custom software. The PNS was then further generalized into a modular electromagnetic field imaging tool called "Radio Camera". The Radio Camera measures electromagnetic fields as a n-dimensional function of swept independent parameters. The multidimensional data sets are processed with geometric and spectral transformations and then visualized. This paper provides an overview of the new PNS and Radio Camera, discusses operational considerations, and compares it with the technology of the original 1987 PNS. Today it is practical for companies, schools and individuals to build low-cost personal antenna measurement systems that are fully capable of meeting modern industry measurement standards. These systems can be further enhanced to explore and visualize electromagnetic fields in new and interesting ways.

Experimental Validation of a Non-Redundant NF-FF Transformation for Long AUTs Mounted in Offset Configuration in a Spherical NF Facility
Francesco D ' Agostino, Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi, October 2019

The experimental validation of an accurate and fast near-field-far-field (NF-FF) transformation technique with spherical scan, suitable for long antennas under test (AUTs) mounted in offset configuration, is provided in this work. The main feature of such a NF-FF transformation is to require, unlike the traditional spherical (TS) one, an amount of NF samples, which is minimum and results to be practically the same in both cases of offset and onset mount-ings of the AUT. To this end, an optimal sampling interpolation formula , developed by properly exploiting the non-redundant sampling representations and modeling an offset mounted long AUT by a cylinder ended by two half-spheres, is employed to precisely recover the massive input NF data for the TS NF-FF transformation from the collected non-redundant samples. A considerable measurement time-saving can be so achieved. Experimental results assessing the validity and the practical feasibility of such a technique are shown.

Topology for Maintaining Symmetry in Hybrid LPDA-Broadband-Dipole Antennas
James Mclean, October 2019

Topologies for hybrid LPDA-broadband-dipole antennas (hybrid antennas) are systematically presented and evaluated regarding their ability to provide symmetric response as defined and required in recent standards. The symmetry property of the hybrid antenna is fundamentally related to the intrinsic infinite balun, the choke structure, and the matching transformer for the broadband dipole, if one is employed. In general, hybrid antennas incorporating matching transformers are more symmetric if the transformer is effectively center-tapped. More specifically, in a hybrid antenna employing an impedance matching transformer derived from an equal-delay hybrid, the sum port can be advantageously connected via a low-impedance load to the center of a symmetric choke arrangement. A specific topology for a hybrid LPDA-broadband-dipole antenna is given here which employs a 1:4 impedance transforming balun between the LPDA and broadband dipole but at the same time provides symmetry such that the antenna satisfies the requirements given in recent standards. Thus, the advantages of the impedance transforming balun are realized, but the symmetry of the antenna is maintained. Finally, it is shown that a hybrid antenna satisfies the symmetry requirements if a 180 • rotation about the bore sight axis is equivalent to a 180 • electrical phase shift in the source and that this behavior is obtained with a combination of 2-fold rotational symmetry in the radiating structure and electrical symmetry in the intrinsic balun structure.

De-embedding Radome Depolarization from Measurements with a Non-Ideal Circularly Polarized Antenna Source
Joshua Roper, Matthew Miller, Don Runyon, October 2019

An approximation method is developed to remove the source antenna's cross-polarization discrimination (XPD) contribution from the total measured XPD. This modeling is shown to correlate very well on a flat-panel test with a radome's predicted (ideal-source) XPD. Additionally, a mathematical formulation of the theoretical cross-polarization discrimination (XPD) bounds is presented to validate the proposed method. The measured axial ratio should not exceed these bounds. The measured result is within these bounds and thus this model serves as an additional validation step to both the proposed method and the measured results.

Indoor 3D Spherical Near Field RCS Measurement Facility: A new high resolution method for 3D RCS Imaging
Pierre Massaloux, Thomas Benoudiba-Campanini, Pierre Minvielle, Jean-François Giovannelli, October 2019

Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern. In order to perform more complete characterizations, a spherical experimental layout has been developed at CEA for indoor Near Field monostatic RCS assessment [3]. This experimental layout is composed of a 4 meters radius motorized rotating arch (horizontal axis) holding the measurement antennas while the target is located on a polystyrene mast mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allows full 3D near field monostatic RCS characterization. 3D imaging is a suitable tool to accurately locate and characterize in 3D the main contributors to the RCS. However, this is a non-invertible Fourier synthesis problem because the number of unknowns is larger than the number of data. Conventional methods such as the Polar Format Algorithm (PFA), which consists of data reformatting including zero-padding followed by an inverse fast Fourier transform, provide results of limited quality. We propose a new high resolution method, named SPRITE (for SParse Radar Imaging TEchnique), which considerably increases the quality of the estimated RCS maps. This specific 3D radar imaging method was developed and applied to the fast 3D spherical near field scans. In this paper, this algorithm is tested on measured data from a metallic target, called Mx-14. It is a fully metallic shape of a 2m long missile-like target. This object, composed of several elements is completely versatile, allowing any change in its size, the presence or not of the front and / or rear fins, and the presence or not of mechanical defects, … Results are analyzed and compared in order to study the 3D radar imaging technique performances.

Experimental Validation of Minimum Redundancy Scanning Schemes in PNF Measurements at V band
M A Saporetti, L J Foged, F D'agostino, F Ferrara, C Gennarelli, R Guerriero, D Trenta, October 2019

The planar wide-mesh scanning (PWMS) methodology is based on a non-redundant sampling scheme [1], [2] and is thus without loss of accuracy. It has the potential to enable much faster measurements than standard Planar Near Field (PNF) scanning that is based on denser, regular, equally spaced NF sampling fulfilling Nyquist criteria. In [3], the non-redundant methodology has been validated numerically by simulated measurements on a highly shaped reflector antenna and with actual measurements on a pencil beam antenna in Ku-band and on a navigation antenna in L-band. In this paper, we present the experimental verification of the PWMS methodology, at V band using dedicated PNF measurements of a Standard Gain Horn antenna MVG SGH4000. The results accuracy of the non-redundant methodology has been investigated against Far-Field patterns, implemented by standard scanning methods, by visual comparison, and by computation of the Equivalent Noise Level (ENL). The achieved under-sampling factor is equal to 12, corresponding to similar time reduction in the stepped measurement system employed for the presented validation.

Recent Developments in International Facility Comparison Campaigns
M A Saporetti, L J Foged, A A Alexandridis, Y Alvarez-Lopez, C Culotta-López, B Svensson, I Expósito, F Tercero, M Sierra Castañer, , , , , ,, October 2019

The EurAAP (the European Association on Antennas and Propagation) [1] Measurements working group (WG5), constitutes a framework for cooperation to advance research and development of antenna measurements. An important ongoing task of this group is to sustain the Antenna Measurement Intercomparisons. The comparison of each facility measurement of the same reference antenna in a standard configuration results in important documentation and validation of laboratory expertise and competence, allowing to validate and document the achieved measurement accuracy and to obtain and maintain accreditations like ISO 17025. An additional outcome is the improvement in antenna measurement procedures and protocols in facilities and contributions to standards, which is one of the long-term objectives of the EurAAP WG5. Several participants among Europe but also USA and ASIA have joined the activity. These campaigns will also serve for a new task, recently approved within the WG5, of self-evaluation from comparison of the measurement results. An important ongoing campaign involves a X/Ku/Ka-band high gain reflector antenna MVI-SR40 fed by SH4000 Dual Ridge Horn. In this paper we report the results here for the first time. The medium gain ridge horn, MVI-SH800, equipped with an absorber plate to enhance the correlation in different facilities has been the reference antenna of another campaign. In [2] the preliminary results were shown. In this paper we present the final validation. The comparison is reported plotting the gain/directivity patterns and computing the equivalent noise level and the Birge ratio with respect to the reference pattern obtained taking into account the uncertainty declared by each facility.

A Review of the CW-Ambient Technique for Measuring G/T in a Planar Near-Field Antenna Range
Ryan T Cutshall, Brett T Walkenhorst, Justin Dobbins, Jacob Freking, Bruce Williams, October 2019

Techniques for measuring G/T have been previously presented at AMTA; however, there are very few papers that discuss how to measure G/T in a near-field antenna range. One recent paper discussed such a method and gave a brief description within the larger context of satellite payload testing [1]. The paper's treatment of G/T was necessarily brief and gives rise to several questions in relation to the proposed method. Other papers that treated this topic required the antenna aperture to be separable from the back-end electronics, which may not be possible in all cases [2-3]. In this paper, we discuss in great detail a slightly modified version of the G/T measurement method presented in [1]. A signal and noise power diagram is presented that can be useful for understanding how system signal-to-noise ratio (SNR) relates to G/T, and a few common misconceptions concerning the topic of G/T are addressed. The CW-Ambient technique for computing G/T of a Unit Under Test (UUT) from measurements in a planar near-field system is described in detail, and a list of assumptions inherent to the CW-Ambient technique is presented. Finally, the validity of the CW-Ambient technique is assessed by analyzing measured data collected from a separable UUT.

Experimental Verification of 3D Metal Printed Dual Circular-Polarized Horn Antenna at V-Band
Ningning Luo, Ghanshyam Mishra, Satish K Sharma, Xinhua Yu, October 2019

In this paper, a 3D metal printed dual circular-polarized horn antenna operating in the V-band is proposed, built and tested. This antenna consists of a horn and a circular waveguide, a single groove polarizer and is side-fed by orthogonally placed rectangular waveguide ports. The groove is placed at 45° with respect to the input ports and provides a phase delay of 90° to generate right-or left-hand circular polarization (RHCP or LHCP). The proposed antenna provides symmetric patterns for all planes and exhibits polarization isolation of more than 30 dB at broadside. This antenna is analyzed to realize wide impedance matching bandwidth and wide 3dB axial ratio (AR) bandwidth. A prototype of the horn antenna has been fabricated using 3D metal printing technology. Metal material with finite surface roughness is considered when modeling this antenna.

A Methodology for Instantaneous Polarization Measurements Using a Calibrated Dual-Polarized Probe
Brett T Walkenhorst, Steve Nichols, October 2019

Accurately measuring the polarization of an antenna is a topic that has garnered much interest over many years. Methods abound including phase-referenced measurements using two orthogonal polarizations, phase-less measurements using two or three pairs of orthogonal polarizations, spinning linear probe measurements, and the rigorous three-antenna polarization method. In spite of the many publications on the topic, polarization measurements are very challenging and can easily lead to confusion, particularly in accurately determining the sense of polarization. In this paper, we describe a method of accurately and rapidly measuring the polarization of an antenna with the aid of a multi-channel measurement receiver and a dual-polarized probe. The method acquires phase-referenced measurements of two orthogonal polarizations. To enable such measurements, we describe a methodology for calibrating the probe. We also describe a tool for automating the polarization measurement and display of the polarization state. By automating the process, it is hoped that the common challenges and confusions associated with polarization measurements may be largely obviated.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30