AMTA Paper Archive

Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)

Search AMTA Paper Archive

Sort By:  Date Added   Publication Date   Title   Author


On the Minimum Range Length for Performing Accurate Direct Far-Field Over-the-Air Measurements
Benoˆıt Benoˆıt Derat, Gerhard F Hamberger, Fabian Michaelsen, October 2019

Over-the-air (OTA) performance evaluation requires large investments in anechoic environments. The question of minimizing the test distance is hence critical, and even more in this time where millimeter-wave technologies are about to be largely deployed in 5G devices. A recent publication has identified that direct far-field measurements can be accurately carried out at a much shorter range length than the well-known Fraunhofer distance. This paper introduces a further validation of this reduced distance, by employing an innovative method to simulate spherical measurements with arbitrary DUT, test probes and range lengths. The studies carried out confirm the relevance of this shorter distance, not only for the evaluation of the peak equivalent istropic radiated power (EIRP) or sensitivity (EIS), but also for the total radiated power (TRP) or sensitivity (TIS). In addition, it is demonstrated that the usual assumption that the TRP or TIS measurement is almost independent from the range length is flawed. Two main reasons relating to the test antenna are established which create this dependence: (i) OTA test probes have a finite resolution, and (ii) the probe and instrumentation typically captures the magnitude of two components of the E-field, which are not straightforwardly related to the power density in the near-field.

Generalized Test-Zone Field Compensation
T M Gemmer, D Heberling, October 2019

Antenna measurement errors occur due to reflections and diffractions within the measuring chamber. In order to extract and correct the undesired signals, a technique based on test-zone field compensation and spherical wave expansion is applied to Compact Antenna Test Range (CATR) and Spherical Near-Field (SNF) measurements of a base transceiver station antenna. The required spherical test-zone field is acquired by simulating the corresponding measurement environment with the multi-level fast multipole method. Due to the numerical complexity of the problem, only the parts of the chamber with a significant influence on the measurement results are modeled. Comparing the determined directivities after applying the correction method, an exact overlap is achieved between the SNF and CATR solution.

Comparative Testing of Devices in a Spherical Near Field System and Plane Wave Generator
F Scattone, D Sekuljica, A Giacomini, F Saccardi, A Scannavini, L J Foged, E Kaverine, N Gross, P O Iversen, October 2019

The Plane Wave Generator (PWG) is an array of elements generating an approximately plane wave over a finite volume in the test area called Quiet Zone (QZ). The plane wave condition can be achieved in close proximity to the array with suitably optimized complex coefficients. The PWG thus achieve far-field testing conditions in a manner similar to the Compact Antenna Test Range (CATR) but with a reduced distance to the QZ [1-2]. As a complete system the PWG has the advantage of reduced physical size compared to the a CATR with equivalent testing capabilities, in particular at lower frequencies. In [3-4], the concept of a high performance, dual polarized PWG supporting up to 1:10 bandwidth was presented. A prototype of a dual polarized PWG has been designed, manufactured and tested in the 600MHz to 6GHz frequency range. This paper presents the initial verification of the prototype PWG. The testing is performed using a representative analog beam forming network with narrow bandwidth. The QZ uniformity of the PWG is verified by spherical near-field measurements and back-propagation. The peak gain of a low directivity antenna is measured at different distances in the QZ and compared to reference measurements in a spherical near-field system. The aim of the comparison is to access the measurement accuracy of the PWG.

Experimental validation of Reference Chip Antennas for 5G Measurement Facilities at mm-Wave
A Giacomini, L Scialacqua, F Saccardi, L J Foged, E Szpindor, W Zhang, M Oliveira, P O Iversen, J M Baracco, October 2019

In this paper, the experimental validation of a micro-probe fed reference antenna targeting the upcoming 5G applications (24.25-29.5GHz band) is presented. The main purpose of these reference antennas is to serve as "gold standards" and to perform gain calibration of 5G test facilities through the substitution method. The outline of these antennas is based on a square array of four printed patches enclosed in a circular cavity. The RF input interface is a stripline-to-coplanar waveguide transition and allows for feeding the device with a micro-probe. Performance obtained by high-fidelity modeling is reported in the paper and correlated to experimental data. Interaction and unwanted coupling with the test equipment are discussed. The use of echo-reduction techniques and spatial filtering is investigated to mitigate these effects.

Portable Laser Guided Robotic Metrology System
Peter A Slater, James M Downey, Marie T Piasecki, Bryan L Schoenholz, October 2019

This paper introduces the new Portable Laser Guided Robotic Metrology (PLGRM) system at the National Aeronautics and Space Administration's (NASA) Glenn Research Center. Previous work used industrial robots in fixed facilities to characterize antennas and required fixtures that do not lend themselves to portable applications. NASA's PLGRM system is designed for in-situ antenna measurements at a remote site. The system consists of a collaborative robot arm mounted on a vertical lift and a laser tracker, each on a mobile base. Together, they enable scanning a surface larger than the robot's reach. To accomplish this, the robot first collects all points within its reach, then the system is moved and the laser tracker is used to relocate the robot before additional points are captured. The PLGRM implementation will be discussed including how safety and planning are combined to effectively characterize antennas. Software defined triggering is a feature, for flexible integration of vector network analyzers and antenna controllers. Lastly, data will be shown to demonstrate system functionality and accuracy.

Improvements in the Measurement of Very Low Cross Polarization Using the Three Antenna Polarization Technique
A C Newell, P Vizcaino, D Gentle, Z Tian, , ,, October 2019

The Three-antenna polarization measurement technique is used to determine the axial ratio, tilt angle and sense of polarization of three antennas from measurements on each of three antenna pairs. The three antennas are generally nominally linearly polarized and the measurement data consists of the change in amplitude from the initial antenna orientation where they are co-polarized to the orientation where one of the antennas is rotated about its axis to the null amplitude position. The sign of the phase change is also noted and the phase change at the null position is known from theoretical calculations to be either plus or minus 90 degrees. The correct sign is determined from the sign of the phase change. For antennas with axial ratios in the range of 50 to 80 dB that will be used as near-field probes or as feeds for reflector antennas, it is imperative to measure the polarization parameters as accurately as possible. The primary source of uncertainty in the measurement is due to scattered signals in the measurement range that arise from multiple reflections between the two antennas and from the absorber on the chamber walls. For antennas with very large axial ratios, the scattered signals can be larger than the true measurement signal. These scattered signals can change the sign of the phase and produce large errors in the amplitude at the null. If the separation distance between the antennas is adjusted after rotating to the null to produce a maximum amplitude, the scattered signal is in phase with the true measurement signal. If the distance is adjusted for the minimum at the null, the scattered and true signals are out of phase. Measurements at these two positions will produce the best measurement of the phase sign and the true amplitude. But if measurements are being performed at a number of frequencies, the maximum and minimum amplitude positions will be different for each frequency, and this will complicate automated multifrequency measurements. New improvements have been developed in the details of the measurements that greatly improve the determination of the phase sign and the amplitude at the null for multiple frequency measurements and these will be described and illustrated in the following paper. With these improvements, the estimated uncertainty of a 60 dB axial ratio is on the order of 1.8 dB. A new technique has also been developed to improve the source correction of the pattern data for probes with large axial ratios that guarantees that the on-axis polarization of the pattern data will be identical to the results of the Three-antenna measurement. The probe correction processing will then produce the highest accuracy results for the polarization of the AUT.

Active Array Measurements using the Portable Laser Guided Robotic Metrology System
Marie Piasecki, Peter Slater, James Downey, Bryan Schoenholz, Kevin Lambert, October 2019

In this paper, we will discuss the impact of mounting structures on the installed performance of phased arrays. In particular, performance data for the Conformal, Lightweight Antennas for Aeronautical Communications Tech-nology (CLAS-ACT) antenna will be presented. Performance data from a series of mounting configurations will show that null depth and location is particularly susceptible to change while the main beam steering angle remains relatively stable. In addition, the Portable Laser Guided Robotic Metrology (PLGRM) system will be discussed as a suitable instrument for measuring antenna patterns in complex or difficult locations that are challenging for traditional ranges. The PLGRM system was recently developed at the National Aeronautics and Space Administration's (NASA) Glenn Research Center (GRC) and deployed to measure in situ antenna patterns.

Comparison of Antenna Measurements Obtained Using an Electro-Optical Probe System to Conventional RF Methods
William Dykeman, Benjamin Marshall, Dale Canterbury, Corey Garner, Richard Darragh, Ali Sabet, October 2019

There are certain applications where the use of electro-optical (EO) probes to acquire near-field measurements can provide major advantages as compared to conventional RF measurement techniques. One such application is in the area of high power RF measurements that are required for calibration and test of active electronically scanned arrays (AESA). The family of EO probes presented herein utilizes the Pockels effect to measure the time-varying electric fields of the antenna under test (AUT). The use of a non-invasive, broadband EO probe facilitates measurement of the tangential electric field components very close to the AUT aperture in the reactive near-field region. This close proximity between the AUT and the measurement probe is not possible with conventional metallic probes. In this paper, the far field gain patterns acquired using the EO probe will be compared to the corresponding gain patterns obtained from conventional far-field and near-field methods. The measurement results, along with the advantages and disadvantages of the EO system configuration, will be presented.

Recent Changes to the IEEE std 1502 Recommended Practice for Radar Cross-Section Test Procedures
Eric Mokole, Vince Rodriguez, Jeff Fordham, L J Foged, ,, October 2019

Radar scattering is typically represented as the RCS of the test object. The term RCS evolved from the basic metric for radar scattering: the ratio of the power scattered from an object in units of power per solid angle (steradians) normalized to the plane-wave illumination in units of power per unit area. The RCS is thus given in units of area (or effective cross-sectional area of the target, hence the name). Note that the RCS of the test object is a property of the test object alone; it is neither a function of the radar system nor the distance between the radar and the test object, if the object is in the far field. Because the RCS of a target can have large amplitude variation in frequency and angle, it is expressed in units of decibels with respect to a square meter and is abbreviated as dBsm (sometimes DBSM or dBm2). In terms of this definition, the RCS of a radar target is a scalar ratio of powers. If the effects of polarization and phase are included, the scattering can be expressed as a complex polarimetric scattering (CPS) matrix. The measurement of the RCS of a test object requires the test object to be illuminated by an electromagnetic plane wave and the resultant scattered signal to be observed in the far field. After calibration, this process yields the RCS of the test object in units of area, or the full scattering matrix as a set of complex scattering coefficients. This paper describes the planned upgrades to the old IEEE Std 1502™-2007 IEEE Recommended Practice for Radar Cross-Section Test Procedures [1]. The new standard will reflect the recent improvements in numerical tools, measurement technology and uncertainty estimates in the past decade.

Using Standard Wideband Antennas as Probe in Spherical Near Field Measurements with Full Probe Correction: Experimental Validation
F Saccardi, A Giacomini, L J Foged, L M Tancioni, S Khlif, Martin Kuhn, ,, November 2018

Full probe compensation techniques for Spherical Near Field (SNF) measurements have recently been proposed [1-5]. With such techniques, even antennas with more than decade bandwidth are suitable probes in most systems. The abolition of otherwise frequent probe changes during multi-service campaigns is a highly desirable feature for modern measurement applications such as automotive. In this paper, a standard dual-ridge horn with 15:1 bandwidth is investigated experimentally as probe in a SNF automotive range. The accuracy of the probe compensation technique is validated by comparison to standard single probe measurement.

Near-Field Spherical Scanning Measurement of a 3D Printed Horn at WR-8 Frequencies
Ronald C Wittmann, Michael H Francis, David R Novotny, Joshua A Gordon, Michael S Allman, November 2018

The National Institute of Standards and Technology (NIST) has measured a WR-8, 3D printed horn at 112.25, 118.75, and 125.25 GHz using the near-field spherical scanning method. The data were processed with both the NIST standard software and the probe-position compensation software. We conclude that the positioning capability of the NIST Configurable Robotic Millimeter-wave Antenna System is so accurate that probe-position compensation is negligible at these frequencies.

Low-Cost Pressure/Temperature Measurements of Wideband Antennas
L Boskovic, M Ignatenko, D S Filipovic, November 2018

This paper discusses design and fabrication of a low cost, combined pressure / thermal test-bench engineered for environmental tests of UAV mounted antennas. Both test-beds are mainly made of commercial of-the-shelf (COTS) parts and in-house made frames. They occupy small space and do not require specific professional skills for operation or high maintenance cost. Measurement setup is designed to reliably reproduce temperature and pressure corresponding to altitudes from sea level to 6000 m (20000 ft) with dynamic load equivalent for 200 m/s (400 knots) of air speed. Experimental results of radome enclosed wideband antenna are presented.

Spherical Phaseless Probe-Corrected Near-Field Measurements of the DTU-ESA VAST12 Reflector Antenna
Javier Fernández Álvarez, Jeppe M Bjørstorp, Olav Breinbjerg, November 2018

An experimental case of spherical probe-corrected phaseless near-field measurements with the two-scans technique is presented, based on magnitude measurements at two surfaces of the VAST12 reflector antenna performed at the DTU-ESA Facility. Phase retrieval using strictly the directly measured near-field magnitude was unfeasible in this setup, due to the small sphere separation allowed by the probe positioner, which led to incorrect and excessively slow convergence. Phase retrieval with larger separation between spheres has shown remarkable results. For these tests a measured magnitude was used in combination with calculated near-field magnitudes at different (larger and smaller) spheres with larger separations than allowed by the experimental setup. It has been seen that larger separation between measurement spheres improves accuracy of phase retrieval. A measurement with a backprojected measurement with 3 m sphere separation is of particular interest because it can be potentially replicated in the DTU-ESA Facility assuming such range of movement was allowed, while being accurate down to an error of less than-35dB. Measurements with larger spheres show even better accuracy. These good results were obtained with the normal spatial sampling rate for complex measurements and with a very simple Hertzian dipole initial guess, and show the superior performance of spherical phaseless measurements with the two-scans technique, compared to a planar setup.

Compact Antenna Measurement Range for OTA testing of Active Antenna System Base Stations
L M Tancioni, A Jernberg, P Noren, P Iversen, A Giacomini, A Scannavini, R Braun, M Boumans, H Karlsson, , ,, November 2018

Measurement scenarios for 5G mobile communications are nowadays challenging the industry to define suitable turn-key solutions that allow Over the Air (OTA) testing of non-connectorized devices. In order to respond to the needs of an effective measurement solution, that allow measuring all the required OTA parameters at both sub6GHz and mm-Wave frequencies and that could be deployed in a very short time, the Compact Antenna Test Range (CATR) was chosen. In this paper, we will summarize the performance and the testing capabilities of a short focal-length, corner-fed CATR design, providing a 1.5 m x 1.5 m cylindrical Quiet Zone, operating from 1.7 GHz to 40 GHz and upgradeable to 110 GHz, allowing OTA measurements of Active Antenna System (AAS) Base Stations (BS), installed at Ericsson premises in Gothenburg, Sweden in 2017.

Geometric Effects on Radar Echoes from a Corner Reflector
P S P Wei, November 2018

Radar data on the complete polarimetric responses from a 4" dihedral corner reflector from 4 to 18 GHz have been collected and studied. As a function of the azimuth, the vertically suspended object may present itself to the radar as a dihedral, a flat plate, an edge, a wedge, or combinations of these. A two-dimensional method-of-moment (2-D MOM) code is used to model the perfectly electrical conducting (PEC) body, which allows us to closely simulate the radar responses and to provide insight for the data interpretation. Of particular interest are the frequency and angular dependences of the responses which yield information about the downrange separation of the dominant scattering centers, as well as their respective odd-or even-bounce nature. Use of the corner reflector as a calibration target is discussed.

Rydberg Atom-based RF Power Measurements
Matt T Simons, Marcus D Kautz, Abdulaziz H Haddab, Joshua A Gordon, Christopher L Holloway, Thomas P Crowley, November 2018

The power transmitted through a waveguide was determined using in-situ atom-based electric field measurements. The field distribution in the waveguide was measured using Rydberg atoms to find the maximum field, which was used to determine the power. For a proof-of-concept, the power of radio frequency fields at 17.86, 19.63, 26.53, and 33.03 GHz were measured in a WR42 waveguide. A section of waveguide was sealed and filled with cesium atoms. These atom-based measurements are self-calibrated and independent of typical power measurement methods.

Measurement of Active Reflection Coefficient for Co-located MIMO Radar Using Dual Directional Couplers
N Colon-Diaz, D Janning, T Corigliano, L Wang, J Aberle, November 2018

This paper presents a way to determine mutual coupling effects through analysis of the active voltage standing wave ratio (VSWR) to predict the presence of large reverse power levels in co-located multiple input multiple output (MIMO) radars in transmit mode. The methodology consists of measuring the forward and reverse waves on a dual directional coupler (DDC) to directly obtain the active reflection coefficient on a co-located MIMO radar system. The active VSWR of each individual antenna is computed from measurements of the active reflection coefficient. These results are compared against analytical methodologies.

Fully Probe Corrected Spherical Near Field Offset Measurements with Minimum Sampling Using the Translated-SWE Algorithm
F Saccardi, F Mioc, A Giacomini, L J Foged, P O Iversen, November 2018

The Translated Spherical Wave Expansion (TSWE) has recently been proposed as a very effective Near-Field-to-Far-Field (NF/FF) transformation tool for down-sampled Spherical Near Field (SNF) measurements with offset Antenna Under Test (AUT). In case of electrically small probes and/or small AUT-probe view angles the TSWE can be accurately applied without compensating for the probe effect. Instead, when electrically larger probes and/or larger view angles are considered, the measured signal is affected by an averaging field effect that should be properly compensated to ensure a good accuracy. In this paper the TSWE technique is applied for the first time tacking into account the full effect of the measuring probe. To validate the proposed technique, a standard gain horn intentionally displaced in offset configuration have been measured in SNF geometry with a first order probe and two different wideband higher-order antennas as probe.

Some Advantages of Using Bi-directional S-Parameters in Near-Field Measurements 1
David R Novotny, Alex J Yuffa, Ronald C Wittmann, Michael H Francis, Joshua A Gordon, November 2018

The unknown-thru calibration technique is being used to achieve a system level calibration at millimeter wave frequencies (>50 GHz) on the robotic ranges at NIST. This two-port calibration requires the use of a full bi-directional measurement, instead of a traditional single-direction antenna measurement. We explored the value of the additional data acquired. We find that we can use this information to verify antenna/scan alignment, image the scattering from the positioner/facility, and perform a first order correction to the transmission data for uncertainties due to LO cable flexure.

Spot-Probe Reflectometer Measurements of Geological Core Slab Samples
Jose Oliverio Alvarez, Development, John W Schultz, November 2018

Rock core specimens collected during surveys for oil drilling have, in a standard form, a 4" diameter. Cores are cut in half or in 1/3-2/3 sections to provide core slab. We developed a measurement procedure based on spot probe illumination to characterize geological and/or geochemical properties of core slab specimens via their complex permittivity for frequencies between 2.5 GHz and 20 GHz. Conventional reflectometer methods are based on illumination of a thin slab of air-or metal-backed material. However, in this case only the front surface is flat and the back surface is semicircular. A measurement method was developed based on time-domain gating to separate the back-surface reflection from that of the front. Material inversion is then based on the amplitude and phase of the reflection just from the front surface. This paper presents details of the calibration for this reflectometer measurement method, along with example measurements of core slab materials. Two different inversion methods are applied to these measured data. The first is a more conventional frequency-by-frequency method for inverting complex permittivity from the amplitude and phase of the reflection. The second method applies a physical model, the Debye relaxation model, to the data. This model-based approach minimizes the errors from edge diffraction from the small sample size.
2024 Antenna Measurement Techniques Association. All Rights Reserved.



1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30