AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Calibration

Adding Phase to the Rotating-Source Antenna Polarization Measurement Method
Jerome Massiot, October 2019

The rotating-source measurement method is usually described as an amplitude only measurement method and the axial ratio is the only characteristic that can be measured. The article illustrates how adding a phase measurement allows to get the sense of polarization and to calculate the circular partial gains over a full cut-plane of the antenna under test. Simulations and a measurement example are shown.

Comparison and contrast of the antenna calibration methods of ANSI and CISPR
Doug Kramer, October 2019

This is a brief comparison between the two recently released documents that detail the methods used for the calibration of antennas intended for use in measuring electromagnetic compatibility.

Measurements of Non-Metallic Targets for the Austin RCS Benchmark Suite
Jon T Kelley, Ali E Yilmaz, David A Chamulak, Clifton C Courtney, October 2019

A simulation-supported measurement campaign was conducted to collect monostatic radar cross section (RCS) data as part of a larger effort to establish the Austin RCS Benchmark Suite, a publicly available benchmark suite for quantifying the performance of RCS simulations. In order to demonstrate the impact of materials on RCS simulation and measurement, various mixed-material targets were built and measured. The results are reported for three targets: (i) Solid Resin Almond: an almond-shaped low-loss homogeneous target with the characteristic length of ~10-in. (ii) Open Tail-Coated Almond: the surface of the solid resin almond's tail portion was coated with a highly conductive silver, effectively forming a resin-filled open cavity with metallic walls. (iii) Closed Tail-Coated Almond: the resin almond was manufactured in two pieces, the tail piece was coated completely with silver coating (creating a closed metallic surface), and the two pieces were joined. The measured material properties of the resin are reported; the RCS measurement setup, data collection, and post processing are detailed; and the uncertainty in measured data is quantified with the help of simulations.

GSS (Gated-Short-Short) Calibration for Free-space Material Measurements in millimeter-Wave Frequency Band
Jin-Seob Kang, Jeong-Hwan Kim, October 2019

Electrical properties of materials are requisite to design electromagnetic (EM) devices and systems. Free-space material measurement method, where the measurands are the free-space scattering parameters of MUT (Material Under Test) located at the middle of transmit (Tx)/receive (Rx) antennas, is suitable for non-destructively testing MUT without prior machining and physical contact in high frequencies. In this paper, GSS (Gated-Short-Short) calibration method using a planar offset short is proposed for calibrating a free-space material measurement system and the measurement result is shown in W-band (75-110 GHz).

Personal Near-field System
Dan Slater, October 2019

In 1987 the author built the world's first Personal Near-field antenna measurement System (PNS). This led to the formation of Nearfield Systems Inc. (NSI) a company that became a major manufacturer of commercial near-field antenna measurement systems. After leaving NSI in 2015 several new personal antenna measurement tools were built including a modern updated PNS. The new PNS consists of a portable XY scanner, a hand held microwave analyzer and a laptop computer running custom software. The PNS was then further generalized into a modular electromagnetic field imaging tool called "Radio Camera". The Radio Camera measures electromagnetic fields as a n-dimensional function of swept independent parameters. The multidimensional data sets are processed with geometric and spectral transformations and then visualized. This paper provides an overview of the new PNS and Radio Camera, discusses operational considerations, and compares it with the technology of the original 1987 PNS. Today it is practical for companies, schools and individuals to build low-cost personal antenna measurement systems that are fully capable of meeting modern industry measurement standards. These systems can be further enhanced to explore and visualize electromagnetic fields in new and interesting ways.

A Compact Reconfigurable Millimeter-Wave Antenna Measurement System Based Upon an Industrial Robot
Jason Jerauld, Felix Yuen, Nathan Landy, Tom Driscoll, October 2019

Echodyne has recently completed and qualified a new millimeter-wave antenna measurement system for characterization of beam-steering antennas such as our Metamaterial Electronic Steering Arrays (MESAs). Unlike most far-field systems that employ a standard Phi/Theta or Az/El positioner, we use a six-axis industrial robot that can define an arbitrary AUT coordinate system and center of rotation. In different operational modes, the robot is used as an angular AUT positioner (e.g., Az/El) or configured for linear scan areas. This flexible positioning system allows us to characterize the range illumination and quiet zone reflections without modification to the measurement system. With minor modifications, the system could also be used in a planar-near field configuration. Range alignment can be easily performed by redefining the coordinate system of the AUT movement in software. The approximate 5.2-meter range length is within the radiating near-field of many arrays of interest, so we employ spherical near-field (SNF) correction when necessary, using internally-developed code. Specialty tilted absorber was installed in the chamber to improve quiet zone performance, over standard absorber treatment for similar aspect ratio ranges. Narrower ranges often have specular reflections that exceed 60° and benefit from the specialty tilted absorber designed to reduce the angle of incidence. We present an overview of the measurement system and some initial measurement data, along with lessons learned during design and integration. I. MEASUREMENT SYSTEM OVERIVEW A 7.3m x 3.7m x 3.7m footprint was allocated for the new R&D millimeter-wave antenna measurement chamber. After accounting for structural considerations, the final chamber interior dimensions are 7.1m(L) x 3.45m(W) x 3.35m(H) and the final range length (separation between range antenna and quiet zone center) is about 5.2 m. Table 1 lists the high-level goals of the measurement system are listed in. Table 1. Echodyne R&D chamber goals. Parameter Goal Frequency range 12-40 GHz, with provisions up to 80 GHz Polarization Dual-linear switched or simultaneous AUT positioner Azimuth-over-Elevation and linear scanning Quiet zone size 0.4m(L) x 0.4m(W) x 0.4m(H) Side lobe uncertainty +/-1 dB for-20 dB sidelobe Figure 1 shows the dimensions of the rectangular chamber, which is lined with the special absorber design described in Section II. Figure 2 shows an overview of the measurement system. The RF subsystem consists of a 4-port vector network analyzer (VNA), a Gigatronics GT-1050A power amplifier, a directional coupler (placed after the amplifier) to provide the VNA reference signal and a MVG QR18000 dual-polarized closed boundary quad-ridged horn [1] as the range antenna. This setup provides continuous frequency coverage from 12 to 40 GHz. External frequency converter modules can be used to extend the range further into millimeter wave. Horizontal and vertical polarization are acquired simultaneously by measuring three receiver channels (B, C & R1) and calculating the ratios B/R1 and C/R1 which remove the effects of amplifier drift (such as temperature coefficient). The range antenna is mounted to a rotary stage to allow direct measurement of Ludwig-III polarization if desired (versus polarization synthesis in post-processing). The AUT positioner described in Section III is a six-axis industrial robot that provides both angular azimuth-over-elevation and linear scanning with high-accuracy. Linear scanning allows planar near-field measurements in addition to the quiet zone evaluation shown in Section IV. The 5.2 m range length is within the radiating near-field of many arrays of interest, especially at higher frequencies. For example, even a relatively small (140 mm) AUT would have a 22.5° phase taper across at 40 GHz. We use the spherical near-field measurement correction [2] described in Section V to obtain true far-field patterns in the Az/El coordinates described by the robot motion. Figure 1. Rectangular chamber dimensions (in inches).

Indoor 3D Spherical Near Field RCS Measurement Facility: A new high resolution method for 3D RCS Imaging
Pierre Massaloux, Thomas Benoudiba-Campanini, Pierre Minvielle, Jean-François Giovannelli, October 2019

Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern. In order to perform more complete characterizations, a spherical experimental layout has been developed at CEA for indoor Near Field monostatic RCS assessment [3]. This experimental layout is composed of a 4 meters radius motorized rotating arch (horizontal axis) holding the measurement antennas while the target is located on a polystyrene mast mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allows full 3D near field monostatic RCS characterization. 3D imaging is a suitable tool to accurately locate and characterize in 3D the main contributors to the RCS. However, this is a non-invertible Fourier synthesis problem because the number of unknowns is larger than the number of data. Conventional methods such as the Polar Format Algorithm (PFA), which consists of data reformatting including zero-padding followed by an inverse fast Fourier transform, provide results of limited quality. We propose a new high resolution method, named SPRITE (for SParse Radar Imaging TEchnique), which considerably increases the quality of the estimated RCS maps. This specific 3D radar imaging method was developed and applied to the fast 3D spherical near field scans. In this paper, this algorithm is tested on measured data from a metallic target, called Mx-14. It is a fully metallic shape of a 2m long missile-like target. This object, composed of several elements is completely versatile, allowing any change in its size, the presence or not of the front and / or rear fins, and the presence or not of mechanical defects, … Results are analyzed and compared in order to study the 3D radar imaging technique performances.

A Review of the CW-Ambient Technique for Measuring G/T in a Planar Near-Field Antenna Range
Ryan T Cutshall, Brett T Walkenhorst, Justin Dobbins, Jacob Freking, Bruce Williams, October 2019

Techniques for measuring G/T have been previously presented at AMTA; however, there are very few papers that discuss how to measure G/T in a near-field antenna range. One recent paper discussed such a method and gave a brief description within the larger context of satellite payload testing [1]. The paper's treatment of G/T was necessarily brief and gives rise to several questions in relation to the proposed method. Other papers that treated this topic required the antenna aperture to be separable from the back-end electronics, which may not be possible in all cases [2-3]. In this paper, we discuss in great detail a slightly modified version of the G/T measurement method presented in [1]. A signal and noise power diagram is presented that can be useful for understanding how system signal-to-noise ratio (SNR) relates to G/T, and a few common misconceptions concerning the topic of G/T are addressed. The CW-Ambient technique for computing G/T of a Unit Under Test (UUT) from measurements in a planar near-field system is described in detail, and a list of assumptions inherent to the CW-Ambient technique is presented. Finally, the validity of the CW-Ambient technique is assessed by analyzing measured data collected from a separable UUT.

Experimental Verification of 3D Metal Printed Dual Circular-Polarized Horn Antenna at V-Band
Ningning Luo, Ghanshyam Mishra, Satish K Sharma, Xinhua Yu, October 2019

In this paper, a 3D metal printed dual circular-polarized horn antenna operating in the V-band is proposed, built and tested. This antenna consists of a horn and a circular waveguide, a single groove polarizer and is side-fed by orthogonally placed rectangular waveguide ports. The groove is placed at 45° with respect to the input ports and provides a phase delay of 90° to generate right-or left-hand circular polarization (RHCP or LHCP). The proposed antenna provides symmetric patterns for all planes and exhibits polarization isolation of more than 30 dB at broadside. This antenna is analyzed to realize wide impedance matching bandwidth and wide 3dB axial ratio (AR) bandwidth. A prototype of the horn antenna has been fabricated using 3D metal printing technology. Metal material with finite surface roughness is considered when modeling this antenna.

A Methodology for Instantaneous Polarization Measurements Using a Calibrated Dual-Polarized Probe
Brett T Walkenhorst, Steve Nichols, October 2019

Accurately measuring the polarization of an antenna is a topic that has garnered much interest over many years. Methods abound including phase-referenced measurements using two orthogonal polarizations, phase-less measurements using two or three pairs of orthogonal polarizations, spinning linear probe measurements, and the rigorous three-antenna polarization method. In spite of the many publications on the topic, polarization measurements are very challenging and can easily lead to confusion, particularly in accurately determining the sense of polarization. In this paper, we describe a method of accurately and rapidly measuring the polarization of an antenna with the aid of a multi-channel measurement receiver and a dual-polarized probe. The method acquires phase-referenced measurements of two orthogonal polarizations. To enable such measurements, we describe a methodology for calibrating the probe. We also describe a tool for automating the polarization measurement and display of the polarization state. By automating the process, it is hoped that the common challenges and confusions associated with polarization measurements may be largely obviated.

Measurements on extended objects for radar field probes
P S P Wei, October 2019

An extended long object usually gives rise to a bright reflection (a glint) when viewed near its surface normal. To take advantage of this phenomenon and as a new concept, a discrete Fourier transform (DFT) on the RCS measurements, taken within a small angular range of broadside, would yield a spectrum of incident wave distribution along that object; provided that the scattering is uniform per unit length, such as from a long cylinder [1, 2]. In this report, we examine the DFT spectra obtained from three horizontal long objects of different lengths (each of 60, 20, and 8 feet). Aside from the end effects, the DFT spectra looked similar and promising as an alternative to the conventional field probes by translating a sphere across a horizontal path. Keywords: RCS measurements, compact range, field probes, extended long objects 1. The Boeing 9-77 compact range The Boeing 9-77 indoor compact range was constructed in 1988 based on the largest Harris model 1640. Figure 1 is a schematic view of the chamber, which is of the Cassigranian configuration with dual-reflectors. The relative position of the main reflector and the upper turntable (UTT) are as shown. The inside dimensions of the chamber are 216-ft long, by 80-ft high, and 110-ft wide. For convenience, we define a set of Cartesian coordinates (x: pointing out of the paper, y: pointing up, z: pointing down-range), with the origin at the center of the quiet zone (QZ). The QZ was designed as an ellipsoidal volume of length 50-ft along z, height 28-ft along y, and width 40-ft along x. The back wall is located at z = 75 ft, whereas the center of the roll-edged main reflector (tilted at 25 o from vertical) is at z =-110 ft. It is estimated that the design approach controls the energy by focusing 98% of it inside the QZ for target measurements. The residual field spreading out from the main reflector was attenuated by various absorbers arranged in arrays and covering the chamber walls.-, Tel. (425) 392-0175 2. Anechoic chamber In order to provide a quiet environment for RCS measurements, the inside surfaces of an anechoic chamber are typically shielded by various pyramidal and wedged-shaped absorbers, which afford good attenuation at near-normal incidence for frequencies higher than ~2 GHz. At low frequencies and oblique angles [3], however, Figure 1. A schematic view of the Boeing 9-77 compact range with dimensions as noted. insufficient attenuation of the radar waves by the absorbers may give rise to appreciable backgrounds. Figure 2 shows a panorama view inside the compact range, as viewed from the lower rear toward the main reflector and the UTT. With the exception of the UTT, all other absorbers are non-moving or stationary. A ring of lights on the floor shows the rim around the lower turntable (LTT), prior to the installation of absorbers. In order to minimize the target-wall interactions, the surfaces facing the QZ from the ceiling, floor, and two sidewalls are covered with the Rantec EHP-26 type of special pyramidal absorbers.

Near-Field Techniques for Millimeter-Wave Antenna Array Calibration
Gerhard F Hamberger, Corbett Rowell, Benoˆıt Benoˆıt Derat, October 2019

A reliable technique for antenna array characterization and calibration is demonstrated for two state-of-the-art antenna measurement systems, a near-field system and a compact antenna test range system. Both systems are known to reduce the measurement distance between device under test and the probe antenna in comparison to classical far-field systems, which need to provide at least the Fraunhofer distance as minimum range length. Equivalent magnetic surface currents are derived from measurements, which represent the electric field on the applied Huygens surface. The calculated equivalent magnetic currents are utilized for characterizing two completely different antenna arrays in the millimeter-wave region. Magnitude and phase calibration opportunities of antenna arrays are discussed, as well as the accuracy provided by the proposed calibration technique.

Testing mmWave Phased Arrays for the 5G New Radio
Michael D Foegelle, October 2019

As the wireless industry continues the move to 5G, the development and subsequent testing of mmWave radios for both base stations and user equipment still face numerous hurdles. The need to test most conformance and performance metrics through the antenna array at these frequencies poses significant challenges and has resulted in excessively large measurement uncertainty estimates to the point where the resulting metrics themselves may be useless. A large contribution to this measurement uncertainty is the impact of the over-the-air (OTA) test range used, driving the industry towards expensive compact range reflector systems in order to overcome the path loss considerations associated with direct far-field measurements. However, this approach necessitates the use of a combined axis measurement system, which implies the need for considerable support structure to hold the device under test and manipulate it in two orthogonal axes. This paper explores some of the limitations and considerations involved in the use of traditional "RF transparent" support materials for mmWave device testing.

Update of IEEE Std 1720-2012 Recommended Practice for Near-Field Antenna Measurements
L J Foged, Michael H Francis, Vince Rodriguez, ,, October 2019

The IEEE Standards Association Standards Board (IEEE-SASB) approved the IEEE Std 1720™ "Recommended Practice for Near-Field Antenna Measurements" in 2012 [1]. More than forty dedicated people from industry, academia and other institutions contributed to the creation of this new document. The main motivation for a new standard dedicated to near-field measurements was to complement the existing IEEE Std 149-1979™ "Test Procedures for Antennas" [2]. According to the IEEE-SA policies, the existing standard IEEE Std 1720-2012™ is approaching expiration in 2022. A working group of the APS Standard Committee has been formed to review the current document. Most of the current standard is still relevant and useful for individuals designing and evaluating near-field antenna measurement facilities and other people involved in antenna measurements. However, the standard needs update and renewal in areas in which new developments and technologies have matured. This paper gives an overview of the current standards and discusses the suggested potential changes.

Use of OTA System Performance Metrics in the Design & Optimization of CATRs for 5G Testing
S F Gregson, C G Parini, October 2019

Delivering on the promise of 5G measurements requires the adoption of new RF system technologies that encompass both the mobile user equipment and the active base station. Keeping pace with the impact of new wireless system test parameters such as: Data throughput, Error Vector Magnitude, Symbol Error Rate, and technologies such as mm-wave Massive MIMO, OFDM, and QAM presents significant challenges to antenna test community. For the most part, the market has attempted to react by adapting traditional test equipment to the wireless market however 5G testing presents an ever-greater challenge and demands the incorporation of simulation effects when designing and optimising an antenna test system, especially as these systems have increased in complexity with the adoption of the indirect far-field method and specifically the compact antenna test range (CATR). This paper discusses how 5G communication system parameters affect the design of the CATR and how newly developed simulation capabilities have been incorporated to optimize the CATR design for 5G test applications.

Measurement Traceability in the CISPR 16-1-6 pattern measurements for CISPR 16-1-4 Site Validations
Doug Kramer, October 2019

The publication of CISPR 16-1-6 [1] in 2107 marked a significant change in the CISPR documents, for the first time the consideration of how to perform antenna pattern measurements in and determine the associated estimate of the uncertainty of those measurement. This is a look at that technique and presentation of how that helps and relates to measurement traceability.

Accurate Calibration of Truncated Spherical Near Field Systems with Different Ground Floors using the Substitution Technique
F Saccardi, F Mioc, A Giacomini, A Scannavini, L J Foged, M Edgerton, J Estrada, P O Iversen, J A Graham, October 2019

The calibration of the antenna measurements system is a fundamental step which directly influences the accuracy of any power-related quantity of the device under test. In some types of systems, the calibration can be more challenging than in others, and the selection of a proper calibration method is critical. In this paper, the calibration of the truncated spherical near-field ranges typically used for automotive tests is investigated, considering both absorbing and conductive floors. The analyses are carried out in a 12:1 scaled multi-probe system, allowing access to the "true", full-sphere calibration which is used as reference. It will be demonstrated that the substitution (or transfer) method is an excellent calibration technique for these types of systems, if applied considering the efficiency of the reference antenna.

Small Antenna Testing in a Compact Antenna Test Range
S F Gregson, C G Parini, S Pivnenko, October 2019

The Compact Antenna Test Range (CATR) was initially conceived as an efficient way of testing electrically large antennas at very much reduced, fixed, range lengths than would otherwise be the case. However, when testing lower gain, physically smaller antennas, the measurements can become susceptible to inhomogeneities within the CATR QZ including phenomena associated with edge diffraction effects, feed spill-over, chamber multipath etc. Whilst it has been demonstrated experimentally that many of these measurement artefacts may be effectively mitigated using standard and modern more sophisticated post-processing techniques. This paper supports those findings through simulation of the direct and indirect far field ranges and by careful examination of the data processing chain. Results are presented, the relative success of the various techniques examined and the utility of this is set, and expounded, in the context of modern, i.e. 5G, communications systems.

Comparative Investigation of Spatial Filtering Techniques for Ground Plane Removal in PEC-Based Automotive Measurements
F Saccardi, F Mioc, L J Foged, M Edgerton, J Estrada, P O Iversen, J A Graham, October 2019

Radiating performances of vehicle-installed antennas are typically performed in large spherical near-field systems able to accommodate the entire car. Due to the size and weight of the vehicle to be tested, such spherical systems are often nearly hemispherical, and the floor is conductive or covered with absorbers. The main advantage of the first is the ease of the accommodation of the vehicle under test. Conversely, the latter is more time consuming in the setup of the measurements because the absorbers need to be moved in order to be placed around the vehicle. On the other hand, the absorber-covered floors emulate a free-space environment which is a key enabling factor in performing accurate measurements at low frequencies (down to 70 MHz). Moreover, the availability of the free-space response allows easy emulation of the cars' behaviors over realistic automotive environments (e.g. roads, urban areas etc.) with commercially available tools. Such emulations are instead much more challenging when a conductive floor is considered. Furthermore, the raw measurements over conductive floors are a good approximation of realistic grounds (such as asphalts) only in a limited number of situations. For these reasons, when PEC-based automotive measurements are performed, it is often required to retrieve the free-space response, or equivalently, to remove the effect of the conductive ground. In this paper two spatial-filtering techniques (the spherical modal filtering and the equivalent currents) will be experimentally analyzed and compared to verify their effectiveness in removing the effect of the conductive floor. For this purpose, a scaled automotive PEC-based measurement setup has been implemented considering a small spherical multi-probe system and a 1:12 scaled car model. The two techniques will be analyzed considering two different heights of the scaled car model with respect to the conductive floor.

Non-contact Characterization of Antenna Impedance, Gain and Pattern through Open-Fixture Network Calibration
Seckin Sahin, Niru K Nahar, Kubilay Sertel, October 2019

We present a novel, non-contact characterization technique for simultaneous characterization of conventional antenna parameters, including the antenna port input impedance, antenna gain and its radiation pattern, without requiring a network analyzer connection to the antenna port. The test antenna and the network analyzer are considered as a 2-port open-air fixture whose network representation corresponds to the desired antenna parameters. The unknown network parameters of the 2-port open-air fixture are determined via a novel calibration process using 4 offset-short termination standards. The error parameters determined by the calibration are then related to the test antenna port impedance and its gain as a function of frequency. Furthermore, the radiation pattern of the test antenna can also be characterized using measured reflection coefficient at the network analyzer port for two offset-short terminations of the test antenna port, while rotating the test antenna over the desired angular range. This novel technique is particularly attractive for installed-antenna applications where an active connection to the test antenna port is either difficult or undesirable, such as on-chip antennas and implanted antennas, to name a few. To demonstrate the efficacy our new method, we present the measured impedance, gain and radiation pattern of a diagonal-horn antenna operating over 360-450 GHz, and a lens-integrated planar butterfly antenna for the 220-325GHz band.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30