AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Microwave Material Characterization using Epsilon Near Zero (ENZ) Tunnel Structures
D.V.B. Murthy, C.J.Reddy, November 2020
Over the years many methods have been developed and used for measuring permittivity and permeability of materials. The most widely used methods are: 1) free-space techniques; 2) cavity perturbation techniques; and 3) transmission line of waveguide methods. Each technique has its own advantages and limitations. The free-space methods are employed when the material is available in a big sheet form. These measurements are less accurate because of unwanted reflections from surrounding objects, difficulty in launching a plane wave in a limited space, and unwanted diffraction from the edges of the sample. The resonant cavity measurement or cavity perturbation techniques are more accurate. Recently "epsilon-near-zero (ENZ) metamaterials have received much attention for several interesting phenomena like super-coupling, transparency and cloaking devices and pattern reshaping at microwave and optical frequencies. The rapid growth and excitement of ENZ materials was due to their ability to achieve very long wavelength in zero permittivity material, allowing propagation in a static-like manner. This paper presents the evaluation of complex dielectric permittivity and magnetic permeability of materials using planar ENZ tunnel structure with substrate integrated waveguide technology. The changes in resonance frequency and quality factor are related to the dielectric permittivity and magnetic permeability properties of the sample through Cavity Perturbation Technique. ENZ tunnel structure has very high sensitivity, which yields more accurate results when compared to other techniques, such as perturbation of conventional cavities. Design, optimization, and simulation of the ENZ tunnel structure at microwave frequencies is presented. Simulations are performed on various dielectric and magnetic samples using the cavity perturbation technique of the ENZ tunnel structure and validated with measured data.
SOLR Calibration Using Planar Offset Short in Free-space Material Measurement
Jin-Seob Kang,Jeong-Hwan Kim, November 2020
Electrical material parameters such as permittivity and permeability are a prerequisite to analysis and to design of EM devices and systems.For the measurements of the EM material parameters, coaxial/waveguide methods and cavity method are used in low frequency range whereas free-space method is suitable in high frequency range. In free-space method, one of the non-destructive methods without prior machining of a MUT (Material Under Test), TRL (Thru-Reflect-Line) calibration method is used when the free-space measurement system has a linear slide to precisely adjust the separation distance between transmit (Tx) and receive (Rx) antennas, and GRL (Gated-Reflect-Line) calibration method in the case that the separation distance between the two antennas is fixed. As one of the well-known calibration methods, SOLR (Short-Open-Load-Reciprocal) calibration method assumes seven unknowns in the free-space material measurement configuration, i.e., the port-#1-side directivity, match, and tracking (E_DF, E_SF, E_RF) between the VNA test port #1 and the MUT, the port-#2-side directivity, match, and tracking (E_DR, E_SR, E_RR) between the VNA test port #2 and the MUT, and the quotient ?/…. This calibration, first performs two one-port calibrations at the port-#1-side and port-#2-side to determine (E_DF, E_SF, E_RF) and (E_DR, E_SR, E_RR) using three reflection standards, and then performs one transmission measurement using a reciprocal two-port standard (in this case, thru) for determining ?/…. Calibration of a free-space material measurement system by using SOLR method requires three free-space reflection standards. Recently, a planar offset short is proposed as a free-space reflection standard because its reflection property has the magnitude of unity and the phase proportional to the offset of the offset short. This paper proposes the SOLR method using three planar offset shorts with the respective offset of (0, ?/6, 2?/6) for calibrating a free-space measurement system. Effects due to the thickness of the MUT are compensated by a de-embedding process. The thinner the thickness is, the better results this method can get. The proposed method does not require a linear slide to precisely adjust the separation distance between Tx and Rx antennas of the measurement system. Theoretical details and measurement results will be presented at the symposium.
Increasing the Material Diversity in the Austin RCS Benchmark Suite Using Thin Plates
Jon Kelley,David Chamulak,Clifton Courtney,Ali Yilmaz, November 2020
The Austin RCS Benchmark Suite has recently been introduced to enable quantitative and objective comparison of computational systems for solving electromagnetic scattering problems, particularly, those relevant to aerospace applications. In the last year, five sets of problems were added to it: dielectric almonds (problem set III-B), mixed material almonds (III-C, III-D), perfectly electrically conducting (PEC) aircraft models (IV-A), and dielectric aircraft models (IV-B). For each problem set, a range of lengths and frequencies of interests are identified, interesting features are highlighted, and datasets containing reference results (from measurements, analytical methods, or numerical methods) are shared online. Although data from several radar cross section (RCS) measurement campaigns of non-metallic targets are available in the literature, these lack the information necessary to precisely model the materials, target geometries, and measurement setups, to quantify uncertainties in the data, and to identify appropriate directions for improving computational methods' performance. This limits their utility for benchmarking computational systems. This article presents an expansion of the Suite to include problems with more complex materials and reference results from a measurement campaign that attempted to ameliorate the deficiencies of existing datasets. Specifically, a set of thin-plate problems are added to the Austin RCS Benchmark Suite to increase material diversity. These consist of problem sets II-B: thin perfect-electrically conducting (PEC) plates, II-C: thin dielectric plates, II-D: thin magnetic radar absorbing material (MagRAM) plates, and II-E: thin MagRAM-coated PEC plates. Reference RCS data that enables validation, RCS measurement and material property uncertainty quantification, and benchmarking are also provided by conducting a simulation-supported measurement campaign in a compact range. To facilitate reproducibility, a popular low-loss dielectric material and a commercially available MagRAM were chosen for these problems: The dielectric material for problem set II-C is PolymaxTM polylactic acid (PLA). For problem sets II-D/E, the ARC Technologies' DD-13490 material is used. Thin plates were manufactured and their RCS were measured at Lockheed Martin's Rye Canyon Facility. The monostatic RCS measurement results and supporting simulation results are available online. Performance data for simulations as well as RCS measurement results with accompanying uncertainty will be presented for problem sets II-B/C/D/E at the conference.
Measurement of RF Absorber at Large Angles of Incidence using Spectral Domain Transformations
Vince Rodriguez, Brett Walkenhorst, Jorgen Bruun, October 2019
Pyramidal RF absorber, widely used in indoor antenna ranges, is designed to minimize reflectivity by creating an impedance transform from free space to the impedance of the absorber material. The pyramidal shape provides this transition quite well at normal incidence. It has been shown in [1] that pyramidal RF absorber performs very well up to angles of incidence of about 45 degrees off-normal, but at wider angles of incidence, the performance degrades significantly. Unfortunately, it is very difficult to perform RF absorber measurements at large oblique incidence angles. In such measurements, the reflected path and the direct path between the antennas are very close in length, making it difficult to use time-domain gating techniques to eliminate the direct coupling. In this paper, a novel approach for performing oblique RF absorber measurements is introduced based on spectral domain transformations. Preliminary measurements using this technique have been compared to RF simulations. Results appear to indicate that this approach is a valid way to perform RF absorber reflectivity measurements at highly oblique incidence angles.
Measurements of Non-Metallic Targets for the Austin RCS Benchmark Suite
Jon T Kelley, Ali E Yilmaz, David A Chamulak, Clifton C Courtney, October 2019
A simulation-supported measurement campaign was conducted to collect monostatic radar cross section (RCS) data as part of a larger effort to establish the Austin RCS Benchmark Suite, a publicly available benchmark suite for quantifying the performance of RCS simulations. In order to demonstrate the impact of materials on RCS simulation and measurement, various mixed-material targets were built and measured. The results are reported for three targets: (i) Solid Resin Almond: an almond-shaped low-loss homogeneous target with the characteristic length of ~10-in. (ii) Open Tail-Coated Almond: the surface of the solid resin almond's tail portion was coated with a highly conductive silver, effectively forming a resin-filled open cavity with metallic walls. (iii) Closed Tail-Coated Almond: the resin almond was manufactured in two pieces, the tail piece was coated completely with silver coating (creating a closed metallic surface), and the two pieces were joined. The measured material properties of the resin are reported; the RCS measurement setup, data collection, and post processing are detailed; and the uncertainty in measured data is quantified with the help of simulations.
GSS (Gated-Short-Short) Calibration for Free-space Material Measurements in millimeter-Wave Frequency Band
Jin-Seob Kang, Jeong-Hwan Kim, October 2019
Electrical properties of materials are requisite to design electromagnetic (EM) devices and systems. Free-space material measurement method, where the measurands are the free-space scattering parameters of MUT (Material Under Test) located at the middle of transmit (Tx)/receive (Rx) antennas, is suitable for non-destructively testing MUT without prior machining and physical contact in high frequencies. In this paper, GSS (Gated-Short-Short) calibration method using a planar offset short is proposed for calibrating a free-space material measurement system and the measurement result is shown in W-band (75-110 GHz).
Personal Near-field System
Dan Slater, October 2019
In 1987 the author built the world's first Personal Near-field antenna measurement System (PNS). This led to the formation of Nearfield Systems Inc. (NSI) a company that became a major manufacturer of commercial near-field antenna measurement systems. After leaving NSI in 2015 several new personal antenna measurement tools were built including a modern updated PNS. The new PNS consists of a portable XY scanner, a hand held microwave analyzer and a laptop computer running custom software. The PNS was then further generalized into a modular electromagnetic field imaging tool called "Radio Camera". The Radio Camera measures electromagnetic fields as a n-dimensional function of swept independent parameters. The multidimensional data sets are processed with geometric and spectral transformations and then visualized. This paper provides an overview of the new PNS and Radio Camera, discusses operational considerations, and compares it with the technology of the original 1987 PNS. Today it is practical for companies, schools and individuals to build low-cost personal antenna measurement systems that are fully capable of meeting modern industry measurement standards. These systems can be further enhanced to explore and visualize electromagnetic fields in new and interesting ways.
Topology for Maintaining Symmetry in Hybrid LPDA-Broadband-Dipole Antennas
James Mclean, October 2019
Topologies for hybrid LPDA-broadband-dipole antennas (hybrid antennas) are systematically presented and evaluated regarding their ability to provide symmetric response as defined and required in recent standards. The symmetry property of the hybrid antenna is fundamentally related to the intrinsic infinite balun, the choke structure, and the matching transformer for the broadband dipole, if one is employed. In general, hybrid antennas incorporating matching transformers are more symmetric if the transformer is effectively center-tapped. More specifically, in a hybrid antenna employing an impedance matching transformer derived from an equal-delay hybrid, the sum port can be advantageously connected via a low-impedance load to the center of a symmetric choke arrangement. A specific topology for a hybrid LPDA-broadband-dipole antenna is given here which employs a 1:4 impedance transforming balun between the LPDA and broadband dipole but at the same time provides symmetry such that the antenna satisfies the requirements given in recent standards. Thus, the advantages of the impedance transforming balun are realized, but the symmetry of the antenna is maintained. Finally, it is shown that a hybrid antenna satisfies the symmetry requirements if a 180 • rotation about the bore sight axis is equivalent to a 180 • electrical phase shift in the source and that this behavior is obtained with a combination of 2-fold rotational symmetry in the radiating structure and electrical symmetry in the intrinsic balun structure.
Multiphysics Analysis of RF Pyramidal Absorbers
Zhong Chen, Hamid Bayat, Anoop Adhyapak, October 2019
RF absorbers dissipate the incident electromagnetic wave by converting the RF energy into heat. In many applications, the absorbers can be subjected to high power incident fields. It is imperative to characterize and analyze the thermal behaviors for these high power applications. In this paper, a multi-physics (of EM and thermal) study has been conducted. The absorbers are first simulated in the ANSYS HFSS for electromagnetics. The absorbers are placed under plane wave incident field as well as from a pyramidal horn antenna in the near field. The output of the HFSS model is then imported to the thermal and computational fluid dynamics (CFD) tool, ANSYS ICEPAK. In order to obtain accurate thermal properties of the material, an experimental setup was designed. The simulation results are validated against measured data. Several effects are shown to affect the absorber internal temperatures for the same incident field level at the front of the absorbers, such as the antenna test distance to the absorber, the shape of the pyramid, and the measurement frequency. These simulation data provide greater insights into the heat dissipation and temperature distribution inside the absorbers.
Reduced Aperture Flanged Rectangular Waveguide Probe for Measurement of Conductor Backed Uniaxial Materials
Adam L Brooks, Michael J Havrilla, October 2019
An algorithm is developed for the non-destructive extraction of constitutive parameters from uniaxial anisotropic materials backed by a conductive layer. A method of moments-based approach is used in conjunction with a previously-determined Green function. A dominant-mode analysis is done for rapid comparison of the derived forward model with that of commercially-available software. Finally, laboratory measurements are taken to compare this approach to that of a destructive, high-precision method.
Feasibility of Coaxial Resonators for Permittivity Measurements of Pressurized Gases
Jose Oliverio Alvarez, October 2019
This paper investigates numerically the feasibility of using quarter wavelength coaxial resonators for permittivity measurements of pressurized gases, as found in the subsurface. The non-short-circuited end of the resonator is facing the inside of a pressure cell and is filled with pressure resistant, low-loss dielectric material. Results show that as pressure increases, the corresponding increase in dielectric constant can be detected through a shift in the resonant frequency of |S11| and confirmed by a change in the phase of S11.
Testing mmWave Phased Arrays for the 5G New Radio
Michael D Foegelle, October 2019
As the wireless industry continues the move to 5G, the development and subsequent testing of mmWave radios for both base stations and user equipment still face numerous hurdles. The need to test most conformance and performance metrics through the antenna array at these frequencies poses significant challenges and has resulted in excessively large measurement uncertainty estimates to the point where the resulting metrics themselves may be useless. A large contribution to this measurement uncertainty is the impact of the over-the-air (OTA) test range used, driving the industry towards expensive compact range reflector systems in order to overcome the path loss considerations associated with direct far-field measurements. However, this approach necessitates the use of a combined axis measurement system, which implies the need for considerable support structure to hold the device under test and manipulate it in two orthogonal axes. This paper explores some of the limitations and considerations involved in the use of traditional "RF transparent" support materials for mmWave device testing.
Measurements on extended objects for radar field probes
P S P Wei, October 2019
An extended long object usually gives rise to a bright reflection (a glint) when viewed near its surface normal. To take advantage of this phenomenon and as a new concept, a discrete Fourier transform (DFT) on the RCS measurements, taken within a small angular range of broadside, would yield a spectrum of incident wave distribution along that object; provided that the scattering is uniform per unit length, such as from a long cylinder [1, 2]. In this report, we examine the DFT spectra obtained from three horizontal long objects of different lengths (each of 60, 20, and 8 feet). Aside from the end effects, the DFT spectra looked similar and promising as an alternative to the conventional field probes by translating a sphere across a horizontal path. Keywords: RCS measurements, compact range, field probes, extended long objects 1. The Boeing 9-77 compact range The Boeing 9-77 indoor compact range was constructed in 1988 based on the largest Harris model 1640. Figure 1 is a schematic view of the chamber, which is of the Cassigranian configuration with dual-reflectors. The relative position of the main reflector and the upper turntable (UTT) are as shown. The inside dimensions of the chamber are 216-ft long, by 80-ft high, and 110-ft wide. For convenience, we define a set of Cartesian coordinates (x: pointing out of the paper, y: pointing up, z: pointing down-range), with the origin at the center of the quiet zone (QZ). The QZ was designed as an ellipsoidal volume of length 50-ft along z, height 28-ft along y, and width 40-ft along x. The back wall is located at z = 75 ft, whereas the center of the roll-edged main reflector (tilted at 25 o from vertical) is at z =-110 ft. It is estimated that the design approach controls the energy by focusing 98% of it inside the QZ for target measurements. The residual field spreading out from the main reflector was attenuated by various absorbers arranged in arrays and covering the chamber walls.-, Tel. (425) 392-0175 2. Anechoic chamber In order to provide a quiet environment for RCS measurements, the inside surfaces of an anechoic chamber are typically shielded by various pyramidal and wedged-shaped absorbers, which afford good attenuation at near-normal incidence for frequencies higher than ~2 GHz. At low frequencies and oblique angles [3], however, Figure 1. A schematic view of the Boeing 9-77 compact range with dimensions as noted. insufficient attenuation of the radar waves by the absorbers may give rise to appreciable backgrounds. Figure 2 shows a panorama view inside the compact range, as viewed from the lower rear toward the main reflector and the UTT. With the exception of the UTT, all other absorbers are non-moving or stationary. A ring of lights on the floor shows the rim around the lower turntable (LTT), prior to the installation of absorbers. In order to minimize the target-wall interactions, the surfaces facing the QZ from the ceiling, floor, and two sidewalls are covered with the Rantec EHP-26 type of special pyramidal absorbers.
Extraction of Magneto-Dielectric Properties from Metal-Backed Free-Space Reflectivity
R D Geryak, J W Schultz, October 2019
Intrinsic magnetic and dielectric properties of magneto-dielectric composites are typically determined at microwave frequencies with both transmission and reflection data. An iterative method, such as root-finding, is often used to extract the properties in a frequency-by-frequency basis. In some situations, materials may be manufactured on a metal substrate that prevents transmission data from being obtained. This happens when the materials are too fragile or too strongly bonded to the substrate for removal and must be characterized with the metal substrate in place. This paper compares two different free-space extraction algorithms, developed for the simultaneous extraction of complex permittivity and permeability from metal-backed reflection. One of the algorithms relies on reflection measurements of the same material with two known thicknesses. The second method takes advantage of wide bandwidth measurements to fit the reflection to analytical models (e.g. Debye). The accuracy of these methods are evaluated and the stability criteria for the techniques will be discussed, as well as the tolerance of the techniques to various measurement errors.
Proposed Changes and Updates on IEEE Std 1128 - Recommended Practice on Absorber Evaluation
Zhong Chen, Vince Rodriguez, October 2019
The last published version of the IEEE Std 1128 is the 1998 edition. It is titled "Recommended Practice for RF Absorber Evaluation in the Range of 30 MHz to 5 GHz". Over the years, the document has been used widely for absorber evaluations in electromagnetic compatibility (EMC) applications as well as in antenna and microwave measurement applications. Besides the obvious frequency range which needs to be expanded to satisfy today's applications, several areas are in need of an update. The proposed document will change the upper frequency limit to 40 GHz (with provisions in the document to potentially extend above 40 GHz based on test methods). Measurement uncertainties were not discussed in the IEEE Std. 1128-1998. In the new edition, measurement instrumentation and test methods are expected to be updated with guidance on estimating measurement uncertainties. In the proposed document, a section on absorber evaluations for high power applications is planned, and fire properties and test methods will be included.
Accurate Calibration of Truncated Spherical Near Field Systems with Different Ground Floors using the Substitution Technique
F Saccardi, F Mioc, A Giacomini, A Scannavini, L J Foged, M Edgerton, J Estrada, P O Iversen, J A Graham, October 2019
The calibration of the antenna measurements system is a fundamental step which directly influences the accuracy of any power-related quantity of the device under test. In some types of systems, the calibration can be more challenging than in others, and the selection of a proper calibration method is critical. In this paper, the calibration of the truncated spherical near-field ranges typically used for automotive tests is investigated, considering both absorbing and conductive floors. The analyses are carried out in a 12:1 scaled multi-probe system, allowing access to the "true", full-sphere calibration which is used as reference. It will be demonstrated that the substitution (or transfer) method is an excellent calibration technique for these types of systems, if applied considering the efficiency of the reference antenna.
Comparative Investigation of Spatial Filtering Techniques for Ground Plane Removal in PEC-Based Automotive Measurements
F Saccardi, F Mioc, L J Foged, M Edgerton, J Estrada, P O Iversen, J A Graham, October 2019
Radiating performances of vehicle-installed antennas are typically performed in large spherical near-field systems able to accommodate the entire car. Due to the size and weight of the vehicle to be tested, such spherical systems are often nearly hemispherical, and the floor is conductive or covered with absorbers. The main advantage of the first is the ease of the accommodation of the vehicle under test. Conversely, the latter is more time consuming in the setup of the measurements because the absorbers need to be moved in order to be placed around the vehicle. On the other hand, the absorber-covered floors emulate a free-space environment which is a key enabling factor in performing accurate measurements at low frequencies (down to 70 MHz). Moreover, the availability of the free-space response allows easy emulation of the cars' behaviors over realistic automotive environments (e.g. roads, urban areas etc.) with commercially available tools. Such emulations are instead much more challenging when a conductive floor is considered. Furthermore, the raw measurements over conductive floors are a good approximation of realistic grounds (such as asphalts) only in a limited number of situations. For these reasons, when PEC-based automotive measurements are performed, it is often required to retrieve the free-space response, or equivalently, to remove the effect of the conductive ground. In this paper two spatial-filtering techniques (the spherical modal filtering and the equivalent currents) will be experimentally analyzed and compared to verify their effectiveness in removing the effect of the conductive floor. For this purpose, a scaled automotive PEC-based measurement setup has been implemented considering a small spherical multi-probe system and a 1:12 scaled car model. The two techniques will be analyzed considering two different heights of the scaled car model with respect to the conductive floor.
Spherical Near-Field Measurements of Satellite Antennas at Extreme Temperatures
A Giacomini, V Schirosi, A Martellosio, L J Foged, C Feat, J Sinigaglia, S Leroy, F Viguier, M Moscetti Castellani, D Cardoni, A Maraca, F Rinalducci, L Rolo, October 2019
Antenna systems commonly used in space applications, are often exposed to extreme environmental conditions and to significant temperature variation. Thermal stress may induce structural deformations of the radiators or affect the RF performance of the active front-ends. These are some of the reasons that pushed the testing technology to characterize the radiating proprieties of Antennas Under Test (AUT) in realistic thermal conditions. Testing facilities available for these purposes are nowadays typically limited in terms of temperature range, measurable radiation pattern and size of the AUT. This paper describes the multi-physics design considerations (i.e. thermal, structural and RF) for the development of a novel facility to evaluate AUT radiation pattern characteristics in thermal conditions, from L to Q band, as an add-on feature to the ESA-ESTEC Hybrid European RF and Antenna Test Zone (HERTZ), located in Noordwijk (The Netherlands). The goal is to extend such a testing to AUTs up to 2.4m diameter in envelope over an extreme temperature range (+/-120°C), allowing a free movement of the AUT and taking advantage of Spherical Near-Field (SNF) measurement techniques.
Experimental validation of Reference Chip Antennas for 5G Measurement Facilities at mm-Wave
A Giacomini, L Scialacqua, F Saccardi, L J Foged, E Szpindor, W Zhang, M Oliveira, P O Iversen, J M Baracco, October 2019
In this paper, the experimental validation of a micro-probe fed reference antenna targeting the upcoming 5G applications (24.25-29.5GHz band) is presented. The main purpose of these reference antennas is to serve as "gold standards" and to perform gain calibration of 5G test facilities through the substitution method. The outline of these antennas is based on a square array of four printed patches enclosed in a circular cavity. The RF input interface is a stripline-to-coplanar waveguide transition and allows for feeding the device with a micro-probe. Performance obtained by high-fidelity modeling is reported in the paper and correlated to experimental data. Interaction and unwanted coupling with the test equipment are discussed. The use of echo-reduction techniques and spatial filtering is investigated to mitigate these effects.
Virtual Drive Testing based on Automotive Antenna Measurements for Evaluation of Vehicle-to-X Communication Performances
F Saccardi, A Scannavini, L Scialacqua, L J Foged, N Gross, A Gandois, S Dooghe, P O Iversen, October 2019
In vehicle communications, so as Vehicle-to-X (V2X), field trials are challenging due to high mobility scenarios and dynamic network conditions. It is complex to interpret measurements, to isolate performance from different components in an integrated system. Consequently, it is desirable to test under repeatable laboratory conditions in the early stages of the development cycle, where designers can quickly validate performance and make rapid modifications to prototype hardware and software cost-effectively. Virtual Drive Test (VDT) has attracted great interest from industry and academia. The objective of VDT is to recreate an approximation of the real-world communication conditions in a controlled laboratory environment. VDT is appealing, since testing can be performed in an automated, controllable and repeatable manner, which can considerably reduce testing time and costs, and meanwhile accelerate actual infrastructure deployment. In this paper we present a new VDT technique which allows to evaluate the V2X communications performances taking into account the measured characteristics of transmit and receive antennas installed on vehicles. The proposed VDT technique is a multistage process where radiation characteristics of the vehicle mounted antennas are first measured in free-space conditions in a controlled and repeatable laboratory environment. The Spherical Wave Expansion (SWE) is then applied to the acquired data in order obtain the Spherical Wave Coefficients (SWC) of the measured devices. From the SWC, the transmission formula (or coupling equation) normally involved for probe correction purposes in spherical near field measurements, is then applied in order to evaluate the coupling between two vehicles. The transmission formula has been properly adapted in order to consider variable distances between the vehicles and arbitrary vehicle orientation so that a generic road path can be easily emulated. In the proposed formulation also variable ground conditions can be considered allowing for a more realistic emulation of the final environment. The proposed technique is presented taking into account measurements of a representative scaled automotive scenario.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  • Member News

    Meet your AMTA 2021 Board of Directors

    AMTA 2020 Proceedings are Available for Download (for AMTA Members Only)

    AMTA 2020 Papers are Now Available Online in the AMTA Paper Archive

    In Remembrance: Dr. Eric Walton

    For those who did not attend this year's symposium, just a reminder to renew your membership before the end of this year

    (Helpful HINT) Don't recall your login credentials or AMTA number? Just click the Reset Password link on any page an follow the instructions

  • AMTA News

    Congratulations to our two Student Travel Scholarship Winners:
    Mr. Florian Reher, RWTH Aachen University: Doctoral Travel Scholarship Recipient
    Ms.  Celia Fonta Romero, Universidad Politécnica de Madrid: Undergraduate Travel Scholarship recipient

    AMTA Board Proposes Bylaw Revisions - View for 90 Days (Posted 6/22/2021) - Send Comments

    AMTA Announces 2020 Best Papers - CLICK HERE


  • Event News

    Computational Modeling of Range Errors Videos & Handouts Now Available
    Hosted by Raytheon Technologies - CLICK HERE

    Visit AMTA 2021 Website for the Symposium on October 24-29, 2021.

    Beware Event & Hotel Phishing Schemes - CLICK HERE