Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
A. Haile,J.C. Nichols, S.A. Marschke, November 1998
Probe correction is required to accurately determine the far-field pattern of an antenna from near-field measurements. At Raytheon Primary Standards Laboratory (PSL) in El Segundo, CA, data acquisition hardware, instrument control software, and a mechanical positioning system have been developed and used with an HP Network Analyzer/Receiver system to perform these measurements. Using a three antenna technique, the on-axis and polarization parameters of a linearly (or circularly) polarized probe are calibrated. The relative far-field pattern of the probe is then measured utilizing the two nominal, orthogonal polarizations of the source antenna. All measurements are stepped in frequency and use a time domain gating technique. The probe and the source antenna are optically aligned to the interface and unique, kinematic designed interface flanges allow repeatable mounting of the antennas to the test station.
M.D. Bushbeck,A.W. Reed, C.N. Eriksen, P.S.P. Wei, November 1998
Recently, RCS measurements were made of several common calibration objects of various sizes in the Boeing 9-77 Range. A study was conducted to examine the accuracy and errors induced by using each as a calibration target with a string support system. This paper presents the results of the study.
Two of the objects, i.e., the 14"-ultrasphere and the 4.5"-dia. cylinder, are found to perform the best in that they exhibit the least departures (error) from theory. The measured departures of 0.2 to 0.3 dB are consistent with the temporal drift of the radar in several hours.
Calibration of monostatic radar cross section (RCS) has been studied extensively over many years, leading to many approaches, with varying degrees of success. To this day, there is still significant debate over how it should be done. It is almost a certainty, that if someone proposes a way to calibrate RCS data, someone else will come up with reasons as to why the "new" approach will not yield results that are "good enough." In the case of full scattering matrix RCS measurements, the lack of information concerning calibration techniques is even greater.
The Air Force's Radar Target Scattering Facility (RATSCAT) at Holloman AFB, NM,has begun an effort to refine monostatic and bistatic cross polarization measurements at various radar bands. For the purposes of this paper, we have concentrated on our monostatic cross polarization developments. Such issues as calibration targets and techniques, system stability requirements, etc. will be discussed.
During several programs we have attempted to collect sufficient data to do full scattering matrix corrections. In a previous paper, "Bistatic Cross-Polarization Calibration," our collected data had a high background which obscured much of the cross polarized return. The data presented here is from a program conducted at RATSCAT recently which utilized the Ka band. Because of the sensitivity of measurements at Ka to many effects, an error estimate was required. This paper presents this error estimation and some results of full scattering matrix correction of RCS data. This analysis is based upon "The Proposed Uncertainty Analysis for RCS Measurements", NISTIR 5019, by R. C. Wittmann, M. H. Francis, L. A. Muth and R.
L. Lewis. This paper was aimed at principle pole measurements, e.g. HH and VV. The tabular data presented in the paper are from this paper with additions for errors associated with cross polarization and cross polarization correction.
Recent results from RCS measurements on metal wires, rods and dielectric strings are presented. For a cylinder at broadside to the incident wave, theoretical from 3D formulas converted from 2D exact solutions are used for comparisons with the experiments. The lone-of-sight orientation dependence is described by the polarimetric scattering matrix. Several types of interference effects are analyzed. Of particular interest is finding the suitable objects for the cross-polarized calibrations over a wide frequency range. Details from a 36" wire of radius 0.01" for calibrations in the VHF range are described. While the wire is supported by fine fishing lines, mitigation of the unwanted string echoes is important.
Calibration standards for radar systems are being developed cooperatively by NIST and DoD scientists. Our goals are to develop standard procedures for polarimetric radar calibrations and to improve the uncertainty in the estimation of system parameters. Dihedrals are excellent polarimetric calibration artifacts, because (1) the consistency between dihedral scattering data and the mathematical model of scattering can be easily verified, and (2) symmetry properties of the dihedral data provide powerful diagnostics to reveal system problems. We apply Fourier analysis to polarimetric data from dihedrals over a full rotation about the line of sight to reduce the effects of noise and clutter, misalignment, and other unwanted signals. An extension of the analysis to satisfy nonlinear model constraints allows us to monitor data quality and to further improve the calibration. We obtain the system parameters from the Fourier coefficients of the data in a simple manner. We illustrate these concepts using polarimetric radar cross section calibration data obtained as part of a national interlaboratory comparison program.
B.E. Fischer,B.M. Kent, B.M. Welsh, T.M. Fitzgerald, W.D. Wood, November 1998
Considerable attention has been given recently to the problem of properly calibrating RCS measurements. Traditionally accepted approaches utilize aluminum spheres for ease of placement (insensitivity to orientation) and availability of computationally accurate (Mie series) solutions. In many situations, however, it can be shown that spheres fail as calibration devices. Past AMTA presentations [1, 2, 3] have shown that required mechanical tolerances for spheres are stringent, and can be difficult to achieve. Furthermore, energy can be bistatically reflected from spheres into column or pylon target supports, adding to calibration contamination.
One solution may be a more wide-spread introduction of squat cylinders as calibration devices. Outdoor ranges have utilized squat cylinders for years for many of the aforementioned reasons. Advantages and disadvantages exist as always. The reduction of target support interaction and improved mechanical tolerances may be offset by difficulty in providing computationally accurate cylinder predictions and proper cylinder orientation. This work attempts to straightforwardly illustrate how these considerations come into play to assist the range engineer in determining how best to proceed to calibrate his or her data.
J.W. Moffat,C.B. Brochu, G.A. Morin, M.E. Kelly, November 1998
The DREO-DFL Antenna Research Lab (DDARLing), contains far-field and planar near-field antenna measurement ranges. Measurements can be made on both ranges from 1.0 to 62.5 GHz.
In the early implementation stages of our antenna measurement ranges, most of our energy was absorbed in mastering the mechanics of the positioners and the intracies of the operation of the software, and addressing component failures. To make useful measurements, it is necessary to minimize system errors. Early experience and frustration has led us to the development of an ordered series of standardized procedures that are aimed at careful set-up, calibration, and operation of the ranges. Within these procedures, attention is paid to the identification and minimization of errors due to alignment, equipment calibration, linearity, leakage, multipath, and drift. Following a brief description of the two ranges in the DDARLing facility, the paper provides details of one of these procedures.
This paper describes the current status of the present cylinder family, and introduces theoretical and experimental RCS data for a modified "bicone" calibration standard. These standards, when used appropriately, greatly improve the quality and efficiency of primary RCS calibration measured within indoor or outdoor ranges. These techniques should offer range owners fairly simple methods to monitor the quality of their primary calibration standards at all times.
Because the incident wave on an anisotropic material is likely to be depolarized, a complete characterization of such a media requires to measure its whole scattering matrix, which afterwards complicates the calibration process. A suitable technic is the Wiesbeck calibration method [1]. In this paper, we apply this method to two configurations, the reflection configuration and the transmission configuration, and obtain very good agreements between theoretical and experimental results.
W.D. Burnside,A.J. Susanto, E.A. Urbanik, November 1997
Sanders, A Lockheed Martin Company, measures radar cross section (RCS) and antenna performance from 2 to 18 GHz at the Com pany's Compact Range. Twelve feed horns are used to maintain a constant beam width and stationary phase centers, with proper gain. However, calibration with each movement of the feed tower is required and the feed tower is a source of range clutter.
To Improve data quality and quantity, Sanders and The Ohio State University ElectroScience Laboratory designed, fabricated, and tested a new wide band feed. The design requirement for the feed was to maintain a constant beam width and phase taper across the 2 - 18 GHz band. The approach taken was to modify the design of the Ohio State University's wide band feed [1]. This feed provides a much cleaner range which reduces the dependence on subtraction and other data manipulation techniques. The new feed allows for wide band images with increased resolution and a six fold increase in range productivity (or reduction in range costs).
This paper discusses this new feed and design details with the unique fabrication techniques developed by Ohio State and its suppliers. Analysis and patterns measured from the feed characterization are presented as well. This paper closes with a discussion of options for further improvements in the feed.
The adoption of planar near-field scanning techniques by many industrial organisations to meet their measurement requirements for large, directive antennas has led to a significant demand for calibrated probes.
To compensate for the effects of the probe used in near-field scanning measurements one requires an accurate knowledge of the gain, axial ratio, tilt and pattern. While NPL has been measuring the gain of microwave antenna standards for over seventeen years, it is only in the last two years that facilities and techniques have been developed to measure the polarisation parameters and pattern of probes. For the gain and polarisation, three antenna techniques are employed and both linearly and circularly polarised probes can be calibrated.
Since calibration data is required at each frequency at which the planar scanner is to be operated, the measurement techniques and software have been developed to allow measurements to be performed at a large number of frequencies simultaneously. This reduces the turn round time, cost and the need for interpolation between measurement points.
NSI recently delivered a Turnkey Near-field Antenna Measurement System (TNAMS) to the Naval Surface Warfare Center - Crane Division (NSWC-CD) in Crane Indiana. The system supports characterization and calibration of the Navy's active array antennas. TNAMS includes a precision 12' x 9' vertical planar near-field robotic scanner with laser optical position measurement system, dual source microwave instrumentation for multiple frequency acquisition, and a wide PRF range pulse mode capability. TNAMS is part of the Active Array Measurement Test Bed (AAMTB) which supports testing of high power active arrays including synchronization with the Navy's Active Array Measurement Test Vehicle (AAMTV), now under development. The paper summarizes the hardware configuration and unique features of the pulse mode capability for high power phased array testing and the TNAMS interface to the AAMTV and AAMTB computers. In addition, range test data comparing antenna patterns with various pulse characteristics is presented.
This paper presents a measurement system used for W-band complex permittivity measurements performed in NASA Langley Research Center's Electromagnetics Research Branch. The system was used to characterize candidate radome materials for the passive millimeter wave (PMMW) camera experiment. The PMMW camera is a new technology sensor, with goals of all-weather landings of civilian and military aircraft. The sensor was developed by TRW as part of a cooperative agreement for the Defense Advanced Research Projects Agency (DARPA) and the dual-use technology program. NASA Langley manages the program on behalf of DARPA and also supports the technology development and flight test operations. Other members of the consortium include McDonnell Douglas, Honeywell, and Composite Optics, Inc. The experiment is scheduled to be flight tested on the Air Force's "Speckled Trout" aircraft in late 1997. This paper details the design, set-up, calibration and operation of a free space measurement system developed and used to characterize the candidate radome materials for this program.
Calibration of monostatic radar cross section (RCS) has been studied extensively over many years, leading to many approaches, with varying degrees of success. To this day, there is still significant debate over how it should be done. In the case of bistatic RCS measurements, the lack of information concerning calibration techniques is even greater. This paper will present the results of a preliminary investigation into calibration techniques and their suitability for use in the correction of cross-polarization errors when data is collected in a bistatic configuration. Such issues as calibration targets and techniques, system stability requirements, etc. will be discussed. Results will be presented for data collected in the C and X bands on potential calibration targets. Recommendations for future efforts will also be presented.
L.A. Muth,B. Kent, D. Hilliard, M. Husar, W. Parnell, November 1997
The National Institute of Standards and Technology (NIST) is coordinating a radar cross section (RCS) interlaboratory comparison study using a rotating dihedral. As an important component of measurement assurance and of the proposed RCS certification program, interlaboratory comparisons can be used to establish repeatability (within specified uncertainty limits) of RCS measurements within and among measurement ranges. The global importance of intercomparison studies in standards metrology, recently conducted comparison studies at NIST, and the status of the first national RCS intercomparison study using a set of cylinders are discussed in [1]. In a companion program, we examine full polarimetric calibration data obtained using dihedrals and rods. Polarimetric data is essential for the complete description of scattering phenomena and for the understanding of RCS measurement uncertainty. Our intent is to refine and develop polarimetric calibration techniques and to estimate and minimize the correstponding measurement uncertainties. We apply theoretical results [2] to check on (1) data and (2) scattering model integrity. To reduce noise and clutter, we Fourier transform the scattering data as a function of rotation angle [2], and obtain the radar characteristics using the Fourier coefficients. Calibration integrity is checked by applying a variant of the dual cylinder calibration technique [3]. Future directions of this measurement program are explored.
Image Editing and Reconstruction (IER) is used to estimate the RCS of component parts of a complex target. We discuss the general areas of controversy that surround the technique, and present a set of practical data processing procedures for assisting in validation of the process. First, we illustrate a simple technique for validating the end-to-end signal processing chain. Second, we present a procedure that compares the original unedited, but fully calibrated, RCS data with the summation of all IER components. For example, if we segregate the image into two components - component of interest, remainder of the target mounting structure plus other clutter - we require that the two patterns coherently sum to the original. This indirectly references the results to the calibration device. In addition, it provides a quantitative means of assessing the relative contribution of the component parts to overall RCS. We demonstrate the procedures using simulated and actual data.
The DTU-ESA Spherical Near Field Antenna Test Facility in Lyngby, Denmark, which is operated in a cooperation between the Danish Technical University (DTU) and the European Space Agency (ESA), has for an ex tensive period of time been used for calibration of Standard Gain Horns (SGHs).
A calibration of a SGH is performed as a spherical scanning of its near field with a subsequent near-field to far-field (NF-FF) transformation. Next, the peak directivity is determined and the gain is found by subtracting the loss from the directivity. The loss of the SGH is determined theoretically.
During a recent investigation of errors in the measurement setup, we discovered that the alignment of the antenna positioner can have an extreme influence on the measurement accuracy. Using a numerical model for a SGH we will in this paper investigate the influence of some mechanical and electrical errors. Some of the results are verified using measurements. An alternative mounting of the SGH on the positioner which makes the measurements less sensitive to alignment errors is discussed.
New measurements on the complete polarimetric responses from a 4" dihedral corner reflector from 4 to 18 GHz are presented. As a function of the azimuth, the vertically suspended object may present itself to the radar as a dihedral, a flat plate, an edge, a wedge, and combinations of these. A two dimensional method-of-moment (2-D MOM) code is used to model the perfectly electrical conducting (PEC) body, which allows us to closely simulate the radar responses and to provide insight for the data interpretation. Of particular interest are the frequency and angular dependences of the responses which yield information about the downrange separation of the dominant scattering centers, as well as their respective odd- or even-bounce nature. Use of the corner as a calibration target is discussed.
NASA Langley Research Center (LaRC) is participating in a technology program element in Synthetic Aperture Microwave Radiometry. This includes deployable antenna technology for "sparse" arrays to provide improved spatial resolution with lower mass and less packaging volume. One instrument under consideration includes a deployable L-Band antenna made up of 16 slotted waveguide array elements. Mutual coupling between elements is known to be critical to the calibration and performance of these systems.
Currently, waveguide element portions of a 37 GHz "minimum redundancy" array, on loan from the US Naval Research Laboratory, were characterized in an effort to develop a computer model of such a system. Coupling measurements were performed on the WR-28, slotted array elements at spacings out to 50 wavelengths. Measurement results will be used for radiometric modeling and validation of a new coupling prediction code developed at NASA LaRC.
The RATSCAT radar cross section (RCS) measurement facility at Holloman AFB, NM is working to satisfy DoD and customer desires for certified RCS data. This paper discusses the low frequency characterization of the RATSCAT VHF/UHF Measurement System (RVUMS). The characterization was conducted on a portable pit with a 30' foam column at the RAMS site. System noise, clutter, backgrounds and generic target measurements are presented and discussed. Potential error sources are examined. The use of background subtraction and full polarimetric calibration are presented. Potential errors, which can occur from using certain cross-pol calibration techniques, are discussed. The phase relationship between each polarization components of the scattering matrix and cross-pol validation techniques are considered.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.