AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Calibration

Antenna Calibrations at NPL
D. Gentle,P. Miller, November 1999

NPL has been providing antenna gain standards since the late 1970's, initially to service internal needs for microwave field strength standards. To meet the increasing industrial demand for the calibration of microwave antennas in areas such as satellite communications and radar, NPL has developed an antenna extrapolation range. The current facility, which is due to be replaced by the end of the year, is used to measure the gain of microwave antennas in the frequency range 1 to 60 GHz, often with a gain uncertainty as low as ± 0.04 dB. Axial ratio, tilt, sense of polarisation and pattern measurements can also be made in the same facility, while for larger antennas a planar near-field scanner is used. Of the many measurement techniques for determining the gain of an antenna, the most accurate is the three antenna extrapolation technique [1,2] which was developed at the National Institute of Standards and Technology (NIST) at Boulder, Colorado, and is the method used at NPL. This is an absolute method as it does not require a prior knowledge of the gain of any of the antennas used. Since calibration data is often required across a wide frequency band, the measurement techniques and software have been developed to allow measurements to be performed at a large number of frequencies simultaneously. This reduces the turn round time, the cost and the need for interpolation between measurement points.

MMW Instrumentation Systems for RCS Measurements & Applications
W.C. Parnell, November 1999

A variety of unique instrumentation radars have been developed by the RF & MMW Systems Division at Eglin Air Force Base in order to support both static and dynam ic Radar Cross Section (RCS) measurements for Smart Weapons Applications. These systems include an airborne multispectral instrumentation suite that was used to collect target signatures in various terrain and environmental conditions (95 GHz Radar Mapping System - 95RMS), a look-down tower based radar designed to perform RCS measurements on ground vehicles (MMW Instrumentation, High Resolution Imaging Radar System MIHRIRS), two high power (35 & 95 GHz) systems capable of mapping/measuring both attenuation and backscatter properties of Obscurants and Chaff (MMW Radar Obscurant Characterization System MROCS: 1&2), and a Materials Measurement System (MMS) which provides complex free space, bistatic attenuation and reflectivity data on Radar Absorbing Materials (RAM), paints, nets and specialized coatings/materials. This paper will describe the instrumentation systems, calibration procedures and measurement techniques used for data collection as well as several applications which support modelina and simulation activities in the Smart Weapon community.

Accurate Impedance and Reflection Coefficient Measurement
M. Fanton, November 1999

Errors arising in the measurement of reflection coefficient are identified and analyzed. The presence of multiple reflections due to poor connectors, transmission line discontinuities, and terminal loads is described, modeled and applied. Various measurement scenarios are analyzed, and measured results are presented as a guide for laboratory troubleshooting and as a validation of the measurement models. Improvements to Vector Network Analyzer calibration methods are proposed, including computer corrected calibration for one-port radiating elements and elementary improvements to two-port TRL calibration. An extensive error evaluation of the somewhat forgotten slotted line measurement is finally presented as a robust alternative, and computer automation, acquisition, and calibration of this measurement is outlined.

524 GHz Polarimetric Compact Range for Scale Model RCS Measurements, A
M.J. Coulombe,G. Szatkowski, J. Waldman, T. Horgan, W. Nixon, November 1999

A fully-polarimetric compact range operating at 524 GHz has been developed for obtaining Ka-band RCS measurements on 1:16th scale model targets. The transceiver consists of a fast switching, stepped, C W , X-band synthesizer driving dual X 4 8 transmitmultiplier chains and dual X 4 8 local oscillator multiplier chains. Software range-gating is used to reject unwanted spurious responses in the compact range. A motorized target positioning system allows for fully automated sequencing of calibration and target measurements over a desired set of target aspect and depression angles. A flat disk and a dihedral at two seam orientations are used for both polarization and R C S calibration. Cross-polarization rejection ratios of better than 45 d B are routinely achieved. The compact range reflector consists of a 1.5m diameter aluminum reflector fed from the side to produce a 0. 5 m diameter quiet zone. Targets are measured in free-space or on a variety of ground planes designed to model most typical grou nd surfaces. A description of this 524 GHz compact range along with 30 ISA R measurement examples are presented in this paper.

Advanced Antenna and RCS Measurement Software
L.G.T. Van de Coevering,V.J. Vokurka, November 1999

ARCS acquisition software for antenna and RCS measurements has been modified such that it is now based on LabWindows/CVI of National Instruments. With open system architecture, industry-standard tools and platform flexibility, new ARCS software delivers all components which are required for an advanced antenna and RCS measurement system. This means tht the portability and modularity of the software is increased considerably. Such a concept has the major advantage of simple adaptation/modification by the user, for instance by adding new menu pages. The virtual instrument concept of CVI guarantees easy adaptation of the newest interface technology, such as USB and firewire. Furthermore, there is a large base of instrument drivers which can be readily used to extend the measurement capabilities of ARCS in a minimum of time Special care is taken in the design of the user interface. This is to avoid complex procedu res for entering measurement parameters. Even less experienced operators must be comfortable with the software and be able to perform complex calibration and data acquisition procedures. Finally, a large number of application programs is written for advanced antenna and RCS calibration, microwave holography, ISAR imaging and frequency extrapolation techniques.

Physics Based Modeling of Target Signatures
J. Berrie,B. Welsh, G. Wilson, H. Chizever, November 1998

The scattered field from an arbitrary target may include a variety of scattering mechanisms such as specular and diffraction terms, creeping waves and resonant phenomena. In addition, buried within such data are target-mount interactions and clutter terms associated with the test environment. This research presents a method for decomposing a broadband complex signal into its constituent mechanisms. The method makes use of basis functions (words) which best describe the physics of the scattered fields. The MUSIC algorithm is used to estimate the time delay of each word. A constrained optimization refines the estimate and determines the energy for each. The method is tested using two far-field radar cross section (RCS) measurements. The first example identifies target­mount interactions for a common calibration sphere. The second example applies the method to a low observable (LO) ogive target.

Full Polarimetric Calibration for RCS Measurement Ranges: Performance Analysis and Measurement Results
B.M. Welsh,A.L. Buterbaugh, B.M. Kent, L.A. Muth, November 1998

Full polarimetric scattering measurements are increasingly being required for radar cross-section (RCS) tests. Conventional co-and cross-polarization calibrations fail to take into account the small amount of antenna cross-polarization that will be present for any practical antenna. In contrast, full polarimetric calibrations take into account and compensate for the cross-polarization the calibration process. We present a full polarimetric calibration procedure and a simulation-based performance study quantifying how well the procedure improves measurement accuracy over conventional independent channel calibration.

Probe Calibration Using Time Domain Gating and Off-Bench Optical Alignment
A. Haile,J.C. Nichols, S.A. Marschke, November 1998

Probe correction is required to accurately determine the far-field pattern of an antenna from near-field measurements. At Raytheon Primary Standards Laboratory (PSL) in El Segundo, CA, data acquisition hardware, instrument control software, and a mechanical positioning system have been developed and used with an HP Network Analyzer/Receiver system to perform these measurements. Using a three antenna technique, the on-axis and polarization parameters of a linearly (or circularly) polarized probe are calibrated. The relative far-field pattern of the probe is then measured utilizing the two nominal, orthogonal polarizations of the source antenna. All measurements are stepped in frequency and use a time domain gating technique. The probe and the source antenna are optically aligned to the interface and unique, kinematic designed interface flanges allow repeatable mounting of the antennas to the test station.

Results from Inter-Laboratory Comparison Measurements at the Boeing 9-77 Range
M.D. Bushbeck,A.W. Reed, C.N. Eriksen, P.S.P. Wei, November 1998

Recently, RCS measurements were made of several common calibration objects of various sizes in the Boeing 9-77 Range. A study was conducted to examine the accuracy and errors induced by using each as a calibration target with a string support system. This paper presents the results of the study. Two of the objects, i.e., the 14"-ultrasphere and the 4.5"-dia. cylinder, are found to perform the best in that they exhibit the least departures (error) from theory. The measured departures of 0.2 to 0.3 dB are consistent with the temporal drift of the radar in several hours.

Full Scattering Matrix Calibration with Error Analysis
R.J. Jost,R.F. Fahlsing, November 1998

Calibration of monostatic radar cross section (RCS) has been studied extensively over many years, leading to many approaches, with varying degrees of success. To this day, there is still significant debate over how it should be done. It is almost a certainty, that if someone proposes a way to calibrate RCS data, someone else will come up with reasons as to why the "new" approach will not yield results that are "good enough." In the case of full scattering matrix RCS measurements, the lack of information concerning calibration techniques is even greater. The Air Force's Radar Target Scattering Facility (RATSCAT) at Holloman AFB, NM,has begun an effort to refine monostatic and bistatic cross polarization measurements at various radar bands. For the purposes of this paper, we have concentrated on our monostatic cross polarization developments. Such issues as calibration targets and techniques, system stability requirements, etc. will be discussed. During several programs we have attempted to collect sufficient data to do full scattering matrix corrections. In a previous paper, "Bistatic Cross-Polarization Calibration," our collected data had a high background which obscured much of the cross polarized return. The data presented here is from a program conducted at RATSCAT recently which utilized the Ka band. Because of the sensitivity of measurements at Ka to many effects, an error estimate was required. This paper presents this error estimation and some results of full scattering matrix correction of RCS data. This analysis is based upon "The Proposed Uncertainty Analysis for RCS Measurements", NISTIR 5019, by R. C. Wittmann, M. H. Francis, L. A. Muth and R. L. Lewis. This paper was aimed at principle pole measurements, e.g. HH and VV. The tabular data presented in the paper are from this paper with additions for errors associated with cross polarization and cross polarization correction.

Study of Wires and Strings of Finite Sizes
P.S.P. Wei,A.W. Reed, E.F. Knott, November 1998

Recent results from RCS measurements on metal wires, rods and dielectric strings are presented. For a cylinder at broadside to the incident wave, theoretical from 3D formulas converted from 2D exact solutions are used for comparisons with the experiments. The lone-of-sight orientation dependence is described by the polarimetric scattering matrix. Several types of interference effects are analyzed. Of particular interest is finding the suitable objects for the cross-polarized calibrations over a wide frequency range. Details from a 36" wire of radius 0.01" for calibrations in the VHF range are described. While the wire is supported by fine fishing lines, mitigation of the unwanted string echoes is important.

Polarimetric Calibration Standards for Reciprocal Monostatic Radar Systems
L.A. Muth,A.L. Buterbaugh, B.M. Kent, B.M. Welsh, P.D. Domich, November 1998

Calibration standards for radar systems are being developed cooperatively by NIST and DoD scientists. Our goals are to develop standard procedures for polarimetric radar calibrations and to improve the uncertainty in the estimation of system parameters. Dihedrals are excellent polarimetric calibration artifacts, because (1) the consistency between dihedral scattering data and the mathematical model of scattering can be easily verified, and (2) symmetry properties of the dihedral data provide powerful diagnostics to reveal system problems. We apply Fourier analysis to polarimetric data from dihedrals over a full rotation about the line of sight to reduce the effects of noise and clutter, misalignment, and other unwanted signals. An extension of the analysis to satisfy nonlinear model constraints allows us to monitor data quality and to further improve the calibration. We obtain the system parameters from the Fourier coefficients of the data in a simple manner. We illustrate these concepts using polarimetric radar cross section calibration data obtained as part of a national interlaboratory comparison program.

Moment Method Inter-code Comparisons and Angular Sensitivity Studies for NIST Calibration (Squat) Cylinders
B.E. Fischer,B.M. Kent, B.M. Welsh, T.M. Fitzgerald, W.D. Wood, November 1998

Considerable attention has been given recently to the problem of properly calibrating RCS measurements. Traditionally accepted approaches utilize aluminum spheres for ease of placement (insensitivity to orientation) and availability of computationally accurate (Mie series) solutions. In many situations, however, it can be shown that spheres fail as calibration devices. Past AMTA presentations [1, 2, 3] have shown that required mechanical tolerances for spheres are stringent, and can be difficult to achieve. Furthermore, energy can be bistatically reflected from spheres into column or pylon target supports, adding to calibration contamination. One solution may be a more wide-spread introduction of squat cylinders as calibration devices. Outdoor ranges have utilized squat cylinders for years for many of the aforementioned reasons. Advantages and disadvantages exist as always. The reduction of target­ support interaction and improved mechanical tolerances may be offset by difficulty in providing computationally accurate cylinder predictions and proper cylinder orientation. This work attempts to straightforwardly illustrate how these considerations come into play to assist the range engineer in determining how best to proceed to calibrate his or her data.

Development of Standardized Procedures for Antenna Measurement Ranges
J.W. Moffat,C.B. Brochu, G.A. Morin, M.E. Kelly, November 1998

The DREO-DFL Antenna Research Lab (DDARLing), contains far-field and planar near-field antenna measurement ranges. Measurements can be made on both ranges from 1.0 to 62.5 GHz. In the early implementation stages of our antenna measurement ranges, most of our energy was absorbed in mastering the mechanics of the positioners and the intracies of the operation of the software, and addressing component failures. To make useful measurements, it is necessary to minimize system errors. Early experience and frustration has led us to the development of an ordered series of standardized procedures that are aimed at careful set-up, calibration, and operation of the ranges. Within these procedures, attention is paid to the identification and minimization of errors due to alignment, equipment calibration, linearity, leakage, multipath, and drift. Following a brief description of the two ranges in the DDARLing facility, the paper provides details of one of these procedures.

Squat cylinder and modified bicone primary static RCS range calibration standards, The
B. Kent,W.D., Jr. Wood, November 1997

This paper describes the current status of the present cylinder family, and introduces theoretical and experimental RCS data for a modified "bicone" calibration standard. These standards, when used appropriately, greatly improve the quality and efficiency of primary RCS calibration measured within indoor or outdoor ranges. These techniques should offer range owners fairly simple methods to monitor the quality of their primary calibration standards at all times.

Polarimetric calibration of anisotropic materials measurements
L. Priou,V. Saavedra, November 1997

Because the incident wave on an anisotropic material is likely to be depolarized, a complete characterization of such a media requires to measure its whole scattering matrix, which afterwards complicates the calibration process. A suitable technic is the Wiesbeck calibration method [1]. In this paper, we apply this method to two configurations, the reflection configuration and the transmission configuration, and obtain very good agreements between theoretical and experimental results.

Wide band feed for a virtual vertex reflector, A
W.D. Burnside,A.J. Susanto, E.A. Urbanik, November 1997

Sanders, A Lockheed Martin Company, measures radar cross section (RCS) and antenna performance from 2 to 18 GHz at the Com­ pany's Compact Range. Twelve feed horns are used to maintain a constant beam width and stationary phase centers, with proper gain. However, calibration with each movement of the feed tower is required and the feed tower is a source of range clutter. To Improve data quality and quantity, Sanders and The Ohio State University ElectroScience Laboratory designed, fabricated, and tested a new wide band feed. The design requirement for the feed was to maintain a constant beam width and phase taper across the 2 - 18 GHz band. The approach taken was to modify the design of the Ohio State University's wide band feed [1]. This feed provides a much cleaner range which reduces the dependence on subtraction and other data manipulation techniques. The new feed allows for wide band images with increased resolution and a six fold increase in range productivity (or reduction in range costs). This paper discusses this new feed and design details with the unique fabrication techniques developed by Ohio State and its suppliers. Analysis and patterns measured from the feed characterization are presented as well. This paper closes with a discussion of options for further improvements in the feed.

Calibration of probes for near-field scanning at NPL, The
D. Gentle, November 1997

The adoption of planar near-field scanning techniques by many industrial organisations to meet their measurement requirements for large, directive antennas has led to a significant demand for calibrated probes. To compensate for the effects of the probe used in near-field scanning measurements one requires an accurate knowledge of the gain, axial ratio, tilt and pattern. While NPL has been measuring the gain of microwave antenna standards for over seventeen years, it is only in the last two years that facilities and techniques have been developed to measure the polarisation parameters and pattern of probes. For the gain and polarisation, three antenna techniques are employed and both linearly and circularly polarised probes can be calibrated. Since calibration data is required at each frequency at which the planar scanner is to be operated, the measurement techniques and software have been developed to allow measurements to be performed at a large number of frequencies simultaneously. This reduces the turn round time, cost and the need for interpolation between measurement points.

Turnkey near-field measurement system for pulse mode applications, A
D.S. Fooshe,K. Thompson, M. Harvey, November 1997

NSI recently delivered a Turnkey Near-field Antenna Measurement System (TNAMS) to the Naval Surface Warfare Center - Crane Division (NSWC-CD) in Crane Indiana. The system supports characterization and calibration of the Navy's active array antennas. TNAMS includes a precision 12' x 9' vertical planar near-field robotic scanner with laser optical position measurement system, dual source microwave instrumentation for multiple frequency acquisition, and a wide PRF range pulse mode capability. TNAMS is part of the Active Array Measurement Test Bed (AAMTB) which supports testing of high power active arrays including synchronization with the Navy's Active Array Measurement Test Vehicle (AAMTV), now under development. The paper summarizes the hardware configuration and unique features of the pulse mode capability for high power phased array testing and the TNAMS interface to the AAMTV and AAMTB computers. In addition, range test data comparing antenna patterns with various pulse characteristics is presented.

W-band free space permittivity measurement system for candidate radome materials
D.T. Fralick,R. Cravey, November 1997

This paper presents a measurement system used for W-band complex permittivity measurements performed in NASA Langley Research Center's Electromagnetics Research Branch. The system was used to characterize candidate radome materials for the passive millimeter wave (PMMW) camera experiment. The PMMW camera is a new technology sensor, with goals of all-weather landings of civilian and military aircraft. The sensor was developed by TRW as part of a cooperative agreement for the Defense Advanced Research Projects Agency (DARPA) and the dual-use technology program. NASA Langley manages the program on behalf of DARPA and also supports the technology development and flight test operations. Other members of the consortium include McDonnell­ Douglas, Honeywell, and Composite Optics, Inc. The experiment is scheduled to be flight tested on the Air Force's "Speckled Trout" aircraft in late 1997. This paper details the design, set-up, calibration and operation of a free space measurement system developed and used to characterize the candidate radome materials for this program.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30