AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Absorber

Back Wall Design Trade – Offs in High Performance VHF/UHF Chambers
John Aubin,Mark Winebrand, November 2009

The back wall is an important element in a high performance tapered or compact range anechoic chamber operating at VHF/UHF frequencies, as by design it is intended to absorb the non-intercepted portion of the incident plane wave containing the majority of the power transmitted by the chamber illuminator. Back wall reflections may interfere with the direct illumination signal and thus influence the test zone performance. Consequently, in order to ensure that the overall test zone reflectivity specification is met, the reflectivity produced by the back wall should be better than the reflectivity specified for the test zone. The conventional approach used to achieve good reflectivity is to apply high performance, high quality absorbing materials to the back wall. Further improvement of up to 10 dB can be achieved if a Chebyshev absorber layout is implemented [1, 2]. This layout consists of high performance absorbing pyramids of different heights, and assumes that the performance does not depend on a metallic backing plate. This approach is expensive, and presents technical challenges due to the complexity involved in the design and manufacturing of the absorbing material. In addition, installation and maintenance is an issue for such large absorbers. In this paper an alternative approach is presented which is based on an implementation of a shaped back wall as, for example, suggested in [3-5], and use of lighter, lower grade absorbing materials whose performance essentially depends on reflections from the metallic backing wall. This type of design can be optimized at the lowest operating frequency, if the back wall and absorber front face reflections cancel each other. Different back wall shapes are considered for a tapered chamber configuration, and the test zone reflectivity produced by a flat, inverted “open book” and a pyramidal back wall are evaluated and compared at VHF frequencies using a 3D EM transient solver [6].

Test Zone Performance Enhancement in Anechoic Chambers Using Two-Level GTD Principles
Mark Winebrand,John Aubin, Marcel Boumans, November 2009

The primary purpose of a chamber for Far–Field (FF) antenna measurements is to create a test zone surrounding the AUT, where the electric field is to be as uniform as possible, and multiple reflections are kept to a minimum. It is well known, that typical rectangular anechoic chambers for Far–Field (FF) antenna measurements are subject to increased reflectivity from specular regions on the side walls, floor and ceiling. The reflectivity further increases if a larger test zone and, consequently, longer source antenna/ AUT separation is required. The alternative to a rectangular chamber, which can be implemented to reduce the reflectivity, could be a chamber with a shaped interior, where the side walls are to be shaped based on GTD/GO principles so that the reflections are diverted out of the test zone. Even more reflectivity suppression is expected, if, in addition, wedge absorbers are used throughout the specular region or entire wall with a smoothly varied wedge orientation chosen according to GTD principles. The combination of two approaches constitutes a chamber design method termed a “Two – Level GTD”. The chamber shape and wedge orientation for delivering reduced reflectivity in the test zone are not unique. According to a “Two -Level GTD” a plurality of solutions exists and can be practically implemented. Freedom in choosing these parameters can be utilized to satisfy the additional requirements for the chamber design to reduce RCS clutter and/or secondary reflections in the chamber. In this paper the method validity is confirmed based on comparison of various chamber designs performed using 3D EM analysis tools.

The Effect of the Absorber Collar on Open Ended Waveguide Probes
Allen Newell, November 2009

This paper describes measurements performed at the National Physical Laboratory (NPL) and Near Field Systems Inc (NSI) on Open Ended Waveguide (OEWG) probes that are typically used for near-field measurements. The effect of the size and location of the absorber collar placed behind the probe was studied. It was found that for some configurations, the absorber collar could cause noticeable ripples in the far-field patterns of the probe and this in turn could affect the probe correction process when the probe was used in near-field measurements. General guidelines were developed to select an absorber configuration that would have minimal effect on the patterns, polarization and gain of the probes.

3-D Antenna Radiation Pattern Measurement System Using Ultra Light Phantom
Hiroyuki Arai,Toshiyasu TANAKA, Yuki Shimizu, November 2009

A 3-D radiation pattern measurement system using an ultra light phantom is proposed for the evaluation of handset antennas in mobile communication systems. The problem of phantom imitating human electrical characteristics is its heavy weight to mount on the 3-D pattern measurement system for the conical or great circle cut method. This difficulty is removed by a light-weight phantom. This paper presents a novel phantom consisting of a plastic shell and wave absorbers whose electrical parameters are optimized to obtain electrically equivalent performance with the human head and body. Single and double layered absorbers are used for the phantom in the frequency range of 800 to 2000 MHz. The weight is less than 7 kg for an upper body phantom with an arm and a hand holding handset under test. This light weight phantom is easily installed on the rotating table of great circle cut measurement facility. This paper presents a design method of ultra light phantom, the characteristics of the phantom and 3-D antenna pattern measurement system in detail.

Interferometer antenna calibration by centered element diagram measurements
Hakan Eriksson, November 2009

A broad band interferometer antenna was designed and manufactured by Saab Avitronics. Saab Aerotech has installed a test facility for calibration of the interferometer antenna. The main purpose of the facility is to measure the interferometric function of the antenna. The interferometric function of the antenna can be measured directly but this method puts very high demands on the test range performance. An alternative method where each element is centered on a short far-field range is evaluated and compared by measurement with a large compact range at Saab Microwave Systems. The paper also describes the design aspects when measuring broad band, broad beam interferometer elements together with the actual design of critical components such as positioners, RF-system and absorber treatment.

MIMO Over-The-Air Testing of Wireless Units in Reverberation Chamber
Charlie Orlenius,Mats Andersson, November 2009

This paper describes how to use reverberation chambers for characterization of radiated performance for wireless units with multiple antennas. Recently, there has been a rapid growth in the interest within the wireless industry for units with multi-antenna configurations. Therefore, there has also been an urgent need for efficient and accessible measurement methods which can capture multi-antenna performance. The reverberation chamber natively supports a rich and uniform multipath scattering environment due to its reflective walls and mode-stirrers. The way of creating the fading statistics with uncomplicated hardware (e.g. a standard shielded enclosure without absorbers) makes the solution easy to handle and cost-effective. Due to the fading properties existing by default in the chamber multi-antenna properties can be directly, accurately and quickly measured in the reverberation chamber.

W-band Antenna Gain Calibration in Extrapolation Range Using Time-Domain Gating
Michitaka Ameya,Masanobu Hirose, Satoru Kurokawa, November 2009

A new simple approach is presented to calibrate the gain of standard gain horn antennas operating in the millimeter-wave frequency band. In terms of calibration, it is difficult to accurately measure the gain of standard gain horn antennas in the far-field region due to the space limitation. Therefore, near-field measurement methods are generally used to calibrate the gain of standard horn antennas. The extrapolation range method is one of the most accurate measurement methods in the near-field region. In the conventional extrapolation range method, a moving average process is applied to remove multiple reflections between antennas. Moving average can only remove multiple reflections between antennas. Therefore, electromagnetic absorbers are required to remove other reflections increasing measurement uncertainties. The time-domain gating method in extrapolation range allows us to remove all reflection waves, and achieve accurate antenna gain calibration without absorbers. The time-domain gating also reduces the number of measurement positions in the extrapolation ranges and obtains the gain of antennas in wide frequency ranges. In this paper, we compare the theoretical value with the time-domain gating method without absorbers by measuring three W-band standard gain horn antennas.

Improving and Extending the MARS Technique to Reduce Scattering Errors
Greg Hindman,Allen Newell, November 2009

The Mathematical Absorber Reflection Suppression (MARS) technique is a method to reduce scattering errors in near-field and far-field antenna measurement systems. Previous tests by the authors had indicated that NSI's MARS technique was not as effective for directive antennas. A recent development of a scattering reduction technique for cylindrical near-field measurements has demonstrated that it can also work well for directive antennas. These measurements showed that the AUT shouldbeoffsetfromtheorigin byadistanceatleastequal to the largest dimension of the AUT rather than only 1-3 wavelengthswhich hadbeenusedfor smallerantennasin the earlier MARS measurements. Spherical near-field measurementshaverecently beenconcludedwhich confirm that with the larger offsets, the MARS technique can be applied to directive antennaswith excellent results. The MARS processing has recently been modified to produce significantly improved results. This improvement isespeciallyusefulfor antennaswherethephasecenterof the horns is located inside the horn and varies with frequency like pyramidal Standard Gain Horns (SGH). Fewermodesarerequired for thetranslatedpatternandthe filtering is more effective at reducing the effect of scattering. The improvement is very apparent for pyramidal horns.

PERFORMANCE IMPROVEMENT WITH AN R-CARD FENCE
Raul Miravet (ATK Missile Systems),Gabriel A. Sanchez (Advanced ElectroMagnetics, Inc.), Dave Steinberger (Precision Fabrications), Teh-Hong Lee (The Ohio State University), November 2008

Hardware-In-The-Loop chambers provide the chamber designer with many difficult obstacles to overcome in order to establish a high performance environment for the measurement of missile seeker systems. One of the most difficult challenges is to overcome the low performance of absorbing materials at low grazing angles. To solve this problem Tapered R-Card Fences have been used in conjunction with Chebyshev absorbers. Last year we reported on the ATK chamber built in Woodland Hills which showed preliminary test results well within the system requirements. This paper will make a direct comparison of chamber performance with and without Tapered R-Card Fences. The establishment of a sister chamber built in the ATK Alliant Techsystems Inc. ABL facility has provided us with the unique opportunity to test the chamber prior to the installation of the R-Cards and then to test it again with the installation of the R-Cards. This unique opportunity has allowed us a direct comparison of an advanced chamber deign with Chebyshev absorbers as would be utilized in a conventional chamber and the performance increase directly attributable to the introduction of the Tapered R-Cards in the anechoic chamber. The chamber evaluation is carried out utilizing The Ohio State developed TDOA measurement method utilizing their proprietary measurement and analysis software.

A State of the Art Anechoic Chamber for Air vehicle Testing at Alenia Aeronautica
Ilario Bertino (Alenia Aeronautica S.p.A.),Marco Bozzetti (Alenia Aeronautica S.p.A.), Gaetano Ariano (Alenia Aeronautica S.p.A.), Chris Kelly (Orbit/FR), Gabe Sanchez (Orbit/FR), November 2008

Electromagnetic Anechoic Chamber has recently been built by Alenia Aeronautica at Caselle South Plant: The Anechoic Chamber is a full anechoic chamber, and it has been designed to carry out electromagnetic vulnerability tests mainly on fighter and unmanned aircraft. In addition measurement can be carried out on many different vehicles that can be brought into the chamber through the main access door. A system to extract exhaust gas was installed in order to carry out tests on a wide variety of vehicles. The Anechoic Chamber has been designed to carry out both HIRF/EMC test and High Sensitivity RF measurement: in particular HIRF/EMC tests in the frequency range 30MHz ÷ 18GHz with the capability of radiating a very high intensity electromagnetic field and High Sensitivity RF measurement, including antenna pattern measurements on antennas installed on aircraft in the frequency range 500MHz ÷ 18GHz. During the design phase a 1/12th scale model of the chamber had been fabricated to assess the desired electromagnetic performance. In this phase of design the model was tested at the scale frequencies for Filed Uniformity, Site Attenuation and Free Space VSWR results. This study was published at the AMTA 2004 meeting. In addition to the physical model, during the construction phase, various computer simulations were performed to further define the detailed internal absorber layout and to define test acceptance methods for procedures not covered by the standards. The computer model analysis was conducted to identify areas of scattering that could be treated with higher performance absorbers to improve the chambers quiet zone performance. The identified “Fresnel Zones." have been treated with high performance absorbers optimized to provide improved performance at microwave frequencies. The absorber optimization was reported at the AMTA 2006 meeting. This optimization has allowed validation of the chamber according to the requirements of CIRSP 16-1-4 2007-02 in the range of frequency 30 MHz - 18GHz. The size (shield to shield) of chamber is 30m wide, 30m long and 20m high, and the 18m wide by 8.5m high main door allows the SUT access. The shielded structure is a welded structure of 3mm-thick steel panels which guarantees shielding effectiveness of more than 100 dB in the frequency range 100 kHz to 20GHz. The chamber includes a 10 meter diameter turntable to rotate a 30 ton SUT with an angular accuracy of ± 0.02° and a pathway to allow SUT access. Both the pathway and the turntable are permanently covered by ferrite tiles. A hoist system permits lifting of the SUT (max 25 tons) up to 10 meters from the turntable centre enabling EMC testing on aircraft with the landing gear retracted.

Mathematical Absorber Reflection Suppression (MARS) to Extend the Frequency Range of an Anechoic Chamber
Greg Hindman (Nearfield Systems Inc.),Allen Newell (Nearfield Systems Inc.), November 2008

NSI’s MARS technique (Mathematical Absorber Reflection Suppression) has been used to improve performance in anechoic chambers and has been demonstrated over a wide range of frequencies on numerous antenna types. MARS is a post-processing technique that involves analysis of the measured data and a special filtering process to suppress the undesirable scattered signals. The technique is a general technique that can be applied to any spherical or far-field range or Compact Antenna Test Range (CATR). It has also been applied to extend the useful frequency range of microwave absorber to both lower and higher frequencies than its normal operating band. This paper will demonstrate the use of the MARS capability in evaluating the performance of anechoic chambers used for spherical near-field measurements, as well as in improving chamber performance.

RF CHARACTERIZATION OF OMNI DIRECTIONAL ANTENNA IN COMPACT ANTENNA TEST FACILITY
Puneet Mishra,N. Ghatpande, Priyanka Mishra, R. Prasad, T. Danabalan, November 2007

This paper describes the development of a test procedure for OMNI directional antenna pattern measurements in Compact Antenna Test Facility (CATF). This study is also of importance as it was presumed that OMNI directional antennas can not be tested in ISAC-CATF due to reflections coming from high-rise metallic structure of DUT positioner. As in ISAC-CATF, DUT positioner is not at all covered with the RF absorbers. Further, effect of Spacecraft body on radiation pattern is also studied. In addition to that effect of high-rise metallic structure of DUT positioner is also presented. It was observed that due to spacecraft body ripples were generated in the radiation pattern of OMNI directional antenna. It was also observed that effect of high-rise metallic structure of DUT positioner was not as significant as of Spacecraft body. At the end of this study, to exactly simulate the integrated spacecraft level condition a 33 dB coupler was connected at antenna output port and measurements were performed with the help of coupled port. Those results are also presented in this paper.

VHF/UHF High Performance Absorbing Material Measurements in a Coaxial Line Using Time-Gating Techniques: Validation & Error Analysis
Gabriel Sanchez,Mark Winebrand, Vadim Vinogradov, Leland Hemming, November 2007

This paper describes the Rectangular Coaxial 40’ long measurement system recently designed and installed at AEMI with the primary purpose of measuring the reflectivity of its high performance VHF/UHF absorbing materials in the frequency range 30 – 510 MHz. The basic principles of the system are described in detail in [1] and are based on S11 – measurements of absorbing material reflectivity by a Vector Network Analyzer (VNA). In order to improve the system productivity and measurement accuracy it was enhanced by the time-gating software option – the standard option of ORBIT/FR Spectrum 959 automated measurement software package [2].The measurement system performance was thoroughly evaluated and validated by a number of tests performed in the “empty” coaxial line, and in the line loaded by absorbing materials. The list of RF uncertainties – various measurement error sources - was generated, the main measurement error contributors were identified, the corresponding errors – estimated and the overall RSS measurement errors were calculated for the absorber reflectivity varying in the range of -30dB to – 40dB.

A LOWER FREQUENCY (UHF AND S-BAND) OPEN BOUNDARY QUADRIDGE HORN ANTENNA AND THE USE OF THE S TO Ku BAND HORN AS A FEED FOR REFLECTORS
Vince Rodriguez,Sander Weinreb, November 2007

The present paper introduces a lower frequency design for the open boundary quadridge horn (OBQH) introduced in [1]. This new horn cover the UHF band and it is usable up to 6GHz. It exhibits a fairly uniform radiation pattern at the upper end of its range as well as a fairly flat gain as was the case with the higher frequency design. The increased frequency band up to 6GHz is accomplished by the use of a ferrite filled cavity that maintains a good VSWR even when the feed cavity is reduced to avoid higher order modes that cause the main beam of the pattern to split. As with the higher frequency design this horn can be used as a source in antenna pattern measurement chambers and even reflectors. As a second part to the paper some data is presented on the use of the S to Ku Band OBQH as a feed for reflectors used in Radio-Astronomy [2]. The results show that by placing the OBQH in an absorber lined cavity the pattern improves and the feed becomes more effective.

A Compact but Highly Flexible 5-axis Positioner
Maurice Paquay,Alain Bonnet, November 2007

ACC has developed for the ESA-ESTEC CATR a compact but highly versatile 5-axis positioner. It is composed of a roll axis, upper azimuth, elevation, translation and lower azimuth axis. The clearance between the floor and the translation stage is designed to pass over a 12” walkway absorber while the roll axis height is only 155 cm (~5 feet). The standard configuration for medium or high gain antennas is the roll-over-azimuth or elevation-over­azimuth configuration with a vertical interface for the AUT. For omni-directional antennas and RCS measurements, the positioner can be configured as a low profile azimuth positioner with a horizontal interface without a blocking structure behind the AUT. The positioner can also be configured for bistatic RCS measurements and Spherical Near Field. With the addition of a linear scanner, the Quiet Zone can be scanned in a polar way but also planar scanning is possible. Other key parameters are: angular accuracy: 0.01°, accuracy of the translation axis: 0.01 mm, load capacity 100 kg.

Unique Application of Chebyshev Absorbers
Gabriel Sanchez,Jerry Wagner, November 2007

The purpose of this paper is to report on the application of Chebyshev absorbers in the design of a multi use anechoic chamber. The requirement was for a chamber which allowed for evaluation of various wireless devices to be evaluated in a multi use chamber. The purpose of the chamber is to support multiple programs and allow for the evaluation of both complete handsets as well as individual components of the wireless devices. Due to the dual purpose applications that were to be evaluated in this chamber neither a standard” antenna range” nor a “classic wireless” chamber fit the bill. In order to optimize the use of this chamber a unique design was developed which incorporates the best of both classical chamber designs. To improve the low frequency response of the chamber a Chebyshev pattern was designed for chamber termination wall. Due to the short length of the chamber in comparison to the target length a Chebyshev pattern was designed for the specular patches on the sidewalls, floor and ceiling to improve the “off angle” performance of the chamber.

Mission to MARS - In Search of Antenna Pattern Craters
Greg Hindman, November 2007

Reflections in anechoic chambers can limit the performance and can often dominate all other error sources. NSI’s MARS technique (Mathematical Absorber Reflection Suppression) has been demonstrated to be a useful tool in the fight against unwanted reflections. MARS is a post-processing technique that involves analysis of the measured data and a special mode filtering process to suppress the undesirable scattered signals. The technique is a general technique that can be applied to any spherical near field or far-field range. It has also been applied to extend the useful frequency range of microwave absorber down to lower frequencies. This paper will show typical improvements in pattern performance, and will show results of the MARS technique using data measured on numerous antennas.

FSS-Loaded Pyramidal Absorber
L. Ford,B. Chambers, November 2006

This paper describes a new approach to improving the low frequency reflectivity performance of geometric transition radar absorbent materials through the use of impedance loading in the form of one or more included FSS layers. The discussion includes theoretical predictions and measured data on modified commercially available RAM which confirm the validity of the concept.

Optimization of a Spherical near-Field System for Measurements in the UHF Frequency Range
M. Giles,J. Smithson, S. Mishra, November 2006

This paper discusses the process of optimization of a spherical near-field range for measurement of large UHF antennas used in space applications. Results of a study undertaken to understand and optimize range performance in presence of multi-path errors and mutual coupling are presented. Data is presented showing variation in measured patterns of a generic UHF antenna as a function various parameters such as a) use of probes of different gains, b) separation distance between the probe and the antenna and c) absorber rearrangement. Use and effectiveness of software post processing approaches such as spherical mode filtering, time domain gating and use of proprietary algorithms (e.g. “MARS processing” developed by NSI Inc.) is illustrated. Practical implementation of these approaches and corresponding impact on data density, test duration and computational effort are also discussed.

Low Frequency Optimization of 72 Inch Absorbers
G. Sanchez,L. Hemming, November 2006

The purpose of this paper is to detail the process used to optimize the low frequency performance of 72 inch absorber. The loading optimization was required to provide enhanced performance of a twisted 72 inch absorber which was to be used in the building of a large aircraft test facility. The chamber performance requirements are over a frequency range of 30 MHz to 18 GHz. The chamber dimensions are 30 meters x 30 meters x 20 meters high. This chamber will be used to measure a variety of fighter aircraft for many EW scenarios. The mission of this facility is to “perform radiated immunity testing of aerospace vehicles with high electromagnetic field intensity, radiated emissions measurements, EMC testing, electronic warfare testing, antenna pattern testing”. Due to the broad frequency range and the fact that the chamber is desired to test both in the low frequency EMC domain and high frequency antenna measurements, an extremely broad band absorber material had to be developed and optimized. The use of ferrite hybrids was considered. Due to the roll off at microwave frequencies and the expense of such a high volume of materials, they were eliminated for cost and due to the limited performance in the 1-2 GHz frequency range. The ideal candidate is a 72 inch twisted pyramidal geometry. The standard loading of these materials is ideal for frequencies above 150 MHz.. The performance level in the 30 MHz to 150 MHz range is less than ideal. A design for the chamber was established with specific target performances required of the 72 inch absorbers. This paper describes the effort taken to optimize the loss properties of the dielectric foam to meet the target absorber performance required for the implementation of the design. Key Words: Absorber Measurements, Absorber Performance, Computer Modeling of Absorbers, Dielectric Properties of Absorber







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30