AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Absorber

A Low Cost Spherical Near-Field Range Facility
J.R. Jones (Scientific-Atlanta, Inc.),C.E. Green (Scientific-Atlanta, Inc.), D.W. Hess (Scientific-Atlanta, Inc.), K.H. Teegardin (Scientific-Atlanta, Inc.), November 1987

In any type of electromagnetic measurements, the ideas of "precision and accuracy" and "low cost" tend to be mutually exclusive. At Scientific-Atlanta, for instance, production testing of antenna products is conducted in low cost miniature "anechoic chambers" which are fabricated in-house. These "chambers" are actually medium-sized to large (64-200 cubic feet) rectangular boxes with absorber attached to their walls. They are usually equipped with single axis positioners at one or both ends, and their usefulness is limited to the measurement of axial ratio on low gain small antennas.

Application of digital filtering (FFT) techniques to the measurement of absorber and anechoic chamber properties
J.C. Hungerford (Emerson & Cuming, Inc.),C.M. Robinson (Emerson & Cuming, Inc.), November 1986

Three measurements commonly used in the absorber industry include absorber testing in NRL arches, testing absorber in waveguides, and testing performance of anechoic chambers. These measurements are closely related. All are looking for the size of one E field vector in the presence of several other E fields of variable amplitudes and phases. The information is extracted from the behavior of the sum as a function of some physical position change or frequency change. Computer controlled, synthesized sources and receivers have had two effects on the way these measurements may be taken and interpreted. First, the data are now available as a series of numbers in a computer instead of a series of lines on a piece of paper. Precise and elegant processing is available to extract the information from the data. Secondly, since frequency changes are made rapidly with this type of instrumentation, and precise position changes are made slowly, the data may be taken for many frequencies at each physical position, this makes it possible to extract additional information from the observed data changes as a joint function of frequency and position. These changes are spread throughout the block of data for signal amplitude vs position and frequency.

Conformal test coupler for measurements through antennas mounted on fuselages
A.D. Ergene (General Dynamics Convair Division), November 1986

Theory, design, and test results of a conformal test coupler that can be mounted on the exterior of a vehicle for direct on site measurements of a fuselage mounted L-band antenna are presented. When there is a requirement to test vehicle instrumentation for radiated power, signal format, etc., a desired method is to couple the test equipment directly to the dedicated antenna on the vehicle. Cavity test couplers have been traditionally employed for direct measurements at the antenna under test. However, a low-profile conformal cavity has poor performance when there is no match between the energy radiated by the antenna and the received energy in the cavity. To suppress unwanted resonances and a high Standing Wave Ratio, such mismatched cavities are loaded heavily with absorber material inside, and in operation exhibit high sensitivity to surface contact and high insertion loss, yielding nonrepeatable measurements. The coupler presented here is a nonresonant cavity that supports a TEM mode compatible with the radiation from the vehicle antenna and avoids spurious resonance spikes. It exhibits extremely low insertion loss and is not sensitive to mounting misalignment. A circumferential microstrip radiator with multiple feed points and a matching network on the back side of the same substrate is wrapped around the inside of a top-hat cylindrical aluminum container. The particular test cavity was designed for the vertically polarized L-band IFF antenna on the cruise missile; however, the same principle makes testing of other fuselage-mounted antennas easier and more reliable.

Broadband reflectivity and scatter evaluation of RF absorbers
A.R. Howland (The Howland Company, Inc.),T.J. Lyon (The Howland Company, Inc.), November 1986

This paper describes specially constructed instrumentation and positioning systems used in evaluating RF absorber, discusses measurement techniques, and presents data and conclusions from current programs. The selected absorbers which were evaluated are typical of those used in anechoic chambers and terminated ranges for antenna, radome and RCS testing.

Characteristics of bistatic scattering from a large absorber covered surface
B. DeWitt,E. Walton, November 1985

In any antenna or RCS measurement range, the walls, floor, and ceiling are covered with radar absorbing material (RAM) so that spurious scattering will be reduced. The bistatic scattering characteristics of these walls etc. are often not accurately known, however. This situation is exacerbated by the techniques often used to measure the scattering characteristics of the RAM used on the walls etc. The measurement techniques are typically “arch type” measurements, where the scattering from a section of absorber (often 3x3 feet) is compared to that scattered by a conducting plate of the same size. These type measurements are often corrupted by edge and corner diffraction terms and the results are often not very accurate.

Some useful RCS test bodies
L., Jr. Peters (The Ohio State University ElectroScience Laboratory),A. Dominek (The Ohio State University ElectroScience Laboratory), W.D. Burnside (The Ohio State University ElectroScience Laboratory), R. Wood (NASA Langley Research Center), November 1985

Versatile test bodies are extremely useful for RCS measurement facilities for many reasons, some of which are listed below: 1) evaluate the performance achievable for a given measurement facility 2) measure the RCS of components normally mounted on a ground plane, and 3) terminate a target pedestal in order to measure its cross-section since most pedestals are designed to attach directly to a target. In order to perform all of these functions a versatile test body should have flat sections to mount components efficiently, it should have a known smooth cross-section with angle of incidence from very low values to large ones, it should not use absorber that could attenuate the signal meant to illuminate the component pieces being tested, etc. Several such test bodies have been studied, some of which will be described.

Automated wideband, phase coherent polarimetric radar cross section measurements
T.K. Pollack (Teledyne Micronetics), November 1984

This paper describes the equipment, mechanics and methods of one of the outdoor ranges at Teledyne Micronetics. A computer controlled microwave transceiver uses pulsed CW over a frequency range of 2-18 GHz to measure the amplitude, phase and polarization of the signal reflected off the target. The range geometry, calibration and analysis techniques are used to optimize measurement accuracy and characterize the target as a set of subscatterers.

A Broadband RCS measurement system
R. P. Flam,R.E. Hartman, November 1984

The fast fourier transform capabilities of the Hewlett-Packard 8510 Network Analyzer provide the basis for an RCS measurement system covering the 50 MHz to 26 GHz frequency range. When used in the broadband mode, fine range resolution is achieved. Vector subtraction and gating capabilities permit the acquisition of accurate data in the presence of strong range reflections. Combining this instrument with a high speed data collection and analysis system yields a powerful RCS measurement capability.

The New ANSI RF Radiation Exposure Standard: Its Background and Impact
D.E. Hudson (Lockheed Aircraft Service Company), November 1984

This presentation will focus on the recently revised ANSI C95 RF Radiation Exposure Standard. Some of the research background for the new standard will be given, and its impact will be explained. Instrumentation guidelines for measuring potentially hazardous fields will be presented. The possible damaging effects of non-ionizing RF radiation is receiving increased attention in the public eye, and it behooves the practicing antenna engineer to be aware of the potential dangers to health and safety from exposure of RF energy.

Applications of new 16-bit SD-2000 digital synchro monitors
G.E. Bowie (Lockheed-California Company),M.B. Petri (Petri Associates), November 1984

Progress is reported on use of synchro to digital converter modules. The particular modules applied are 16 bit SDC-361 units, manufactured by ILC Data Device Corporation. Two converters are included in each pf five Model SD-2000 synchro monitors designed and fabricated by Petri Associates and acquired by the Lockheed-California Company for the antenna test facility of the Kelly Johnson R&D Center at Rye Canyon. Applications depended upon learning how Type 23TX6 synchro transmitter pairs in the model towers and elevation-over-azimuth positioners at the facility can be electrically zeroed to match the 16 bit resolution of SDC-361 synchro to digital converters.

Fourth generation indoor range
K.S. Kelleher, November 1984

The measurement of microwave antennas indoors began with the advent of commercial absorbing material. The use of absorbers can be traced back to a 2 gHz material developed by the Dutch in the Thirties. During the Forties, considerable progress was made on absorbing materials, but even after World War II, security considerations limited the application. Some materials found use as indoor shields for antenna tests, but limited bandwidth limited the utility of these materials. When a broad band absorber was developed the antenna experts did not believe that this material would be made commercially because they presumed a limited market.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30