AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Phased Array

Effect of Element Phase Center Displacements on Phased Array Performance
K. Tuttle (Massachusetts Institute of Technology),F. Willwerth (Massachusetts Institute of Technology) H. Aumann (Massachusetts Institute of Technology), November 2001

The electrical phase center locations of the elements in a two-dimensional phased array are examined. A technique is described for precisely locating the element phase centers when the elements are offset from the center of rotation. The element phase centers are shown to be significantly displaced from the physical element locations. The displacement causes a systematic beam pointing bias, which can be predicted and measured.

Phased Array Calibration Method with Evaluating Phase Shifter Error
N. Takemure (Mitsubishi Electric Corporation),I. Chiba (Mitsubishi Electric Corporation), M. Ohtsuka (Mitsubishi Electric Corporation), T. Takahashi (Mitsubishi Electric Corporation), Y. Konishi (Mitsubishi Electric Corporation), November 2001

In this paper, the authors propose an improved Rotatingelement Electric-field Vector (REV) method taking into account amplitude and phase error of phase shifters in order to achieve more precise calibration. The conventional REV method has been used in order to determine and/or adjust amplitude and phase of electrical field radiated from each antenna element -element fieldin phased array antennas. However, amplitude and phase deviations due to phase shifter errors, and so on, reduce the measurement accuracy because the conventional REV method assumes no deviation. On the other hand, the proposed REV method can evaluate element fields without error and error electrical fields -error fields- due to phase shifter errors in each bit, by measuring both amplitude and phase value of array composite electrical field. In a simulation for a 31- element array with 5-bit phase shifter, the evaluated element fields and error fields agree well with the expected values. This result shows that the proposed method allows the phased arrays to be calibrated more accurately as considering phase shifter errors.

Thermographic/Holographic Calibration of Phased Array Antennas
J. Norgard (University of Colorado),C. Stubenrauch (NIST/Boulder), J. Will (Sun Microsystems), November 2001

A thermal technique for the remote calibration of phased array radar antennas is proposed in this paper. The technique is based on infrared (IR) measurements of the heat patterns produced in a thin planar detector screen placed near the antenna. The magnitude of the field can be measured by capturing an isothermal image (IR thermogram) of the field with an IR imagining camera. The phase of the field can be measured by creating a thermal interference pattern (IR/microwave hologram) between the phased array antenna and a known reference source. This thermal imaging technique has the advantages of speed and portability over existing hard-wired probe methods and can be used in-the-field to remotely measure the magnitude and the phase of the field radiated by the antenna. This information can be used to calibrate the individual elements controlling the radiation pattern of the array.

Accuracy Estimation of Microwave Holography From Planar Near-Field Measurements
C.A. Rose, November 2000

Microwave holography is a popular method for diagnosis and alignment of phased array antennas. Holography, commonly known in the near-field measurement community as "back­ transformation", is a method that allows computation of the primary (aperture) fields from the secondary (far-zone) fields. This technique requires the far-zone fields to be known over a complete hemisphere and adequately sampled on a regular spaced grid in K-space. The holography technique, while known to be mathematically valid, is subject to errors just as all measurements are. Surprisingly, very little work has been done to quantify the accuracy of the procedure in the presence of known measurement errors. It is unreasonable to think that the amplitude and phase of the array elements can be trimmed to better than the uncertainty of the back-transformed amplitude and phase. This makes it difficult for an antenna engineer to determine the achievable resolution in the measurement and calibration of a phased array antenna. This study reports the results of an empirical characterization of known errors in the holography process. A numerical model of the near-field measurement and holography process has been developed and many test cases examined in an effort to isolate and characterize individual errors commonly found in planar microwave holography. From this work, an error budget can be developed for the measurement of a specific antenna.

Small, Broadband, Dual-Polarized, Phased Array Aperture Implemented Using Flare Notch Elements, A
A. Torres,A. MacFarland, P. Beyerle, W. Mohuchy, November 2000

The purpose for this advanced development program was to design, fabricate and test a physically small, broadband, dual-polarized, phased array antenna aperture using Flare Notch elements. The array was designed to operate in the 4 to 18 GHz frequency spectrum, having a VSWR of less than 2:1 and capable of handling 10 watts per element. The array was configured with polarization diversity, essentially, dual cross elements are used which are excited in phase or out of phase depending on the application. One of the significant accomplishments of this research effort was the elimination of grating lobes and the reduction of the size of the elements. Another significant accomplishment is the feeding of dual flare notch elements with a broadband microstrip match network. The antenna elements were implemented using Rogers 4003 materials. Fabrication of the elements and assembly of the elements is being done in a configuration of two rows by twelve elements of which only eight elements are normally excited. The remaining elements are used as parasitics to support the desired radiation pattern. The research work is being done in support of the next generation of solid state broadband radiation systems presently under development for ECM applications.

Method to Simulate the Antenna Radiation Patterns Measured in a Compact Range
P.R. Rousseau, November 2000

An important source of error in a compact range antenna pattern measurement is the deviation of the quiet-zone field from the perfectly fiat amplitude and phase of a plane wave field. Although some guidelines and rules of thumb exist that relate the quiet-zone field to the error in the measured antenna patterns, the error or perturbation is dependent on the particular type of antenna that is being measured. For example, the non-ideal quiet­ zone field will produce very different errors for a small horn than for a large phased array. A realistic error budget or uncertainty analysis of the compact-range measurement requires knowledge of the antenna pattern uncertainty as a function of the quiet-zone field and the particular antenna of interest. A simulation method is derived using reciprocity that allows one to quantify the perturbations induced in a given antenna pattern when the quite-zone field distribution is known. This is particularly useful, since one typically has a fair estimate of the antenna pattern and has measured data of the quiet-zone field. The simulation is tested by modelling the antenna as a collection of elemental current sources and simulating the quiet-zone field as generated by elemental current sources. Using this simple simulation model, a closed-form near-field antenna pattern may be calculated for comparison with the more general computer simulation derived from reciprocity.

Compact Antenna Test Range Built to Meet the Unique Testing Requirements for Active Phased Array Antennas, A
R. Sauerman,C. Stoffels, November 1999

Microwave Instrumentation Technologies (MI Technologies) in cooperation with Hollandse Signaalapparaten B.V. (Signaal) and the Royal Netherlands Navy has designed and produced a compact antenna test range to specifically address the unique testing requirements imposed in the testing of active phased array antennas. The compact range was built specifically to test Signaal's new Active Phased Array Radar (APAR) prior to introduction into various naval fleets throughout the world. This reversible Compact Antenna Test Range (CATR) allows antenna testing in both transmit and receive modes. The measurement hardware is capable of testing both CW and pulsed waveforms with high dynamic range. In addition to conventional antenna pattern measurements the system is capable of measuring EIRP, Gff and G/NF, as well as providing analysis software to provide aperture reconstruction. A special Antenna Interface Unit (AIU) was designed and built to communicate with the Beam Steering Computer which controls the thousands of T/R modules which make up the APAR antenna system. A special high power absorber fence and other safeguards were installed to handle the transmit energy capable of being delivered from the APAR antenna system.

Experimental Verification of the Control Circuit Encoding Technique for Calibration of Phased Array Antennas
D.S. Purdy,G.M. Kautz, J.M. Ashe, November 1999

The control circuit encoding (CCE) technique [1,2] has been proposed as a method of remotely calibrating a phased array antenna. This patented technique uses an orthogonal coding scheme to measure the amplitude and phase of all array elements simultaneously. The capacity to measure all elements simultaneously is more efficient than single element measurements since measurement time is minimized. This paper describes an experimental verification of the CCE technique. Accurate control of amplitude and phase distribution in an array is important because it allows for low sidelobe array designs that can be maintained over the life cycle of the system. Also discussed is our method for estimating statistics of calibration performance using a stepped null approach. The results demonstrate that the CCE method is a viable approach for calibrating a phased array.

Diagnostic Techniques for Verification of Planar Nearfield Range Used for Characterization of the ERIEYE AEW Phased Array Antennas
H. Eriksson, November 1999

The NIST 18 term error budget is used to estimate the magnitude of each individual source of error and then combine them to the total uncertainty for the planar nearlield range designed for antenna characterization of the ERIEYE Airborne Early Warning System. The ERIEYE AEW System consists of two large phased array antennas, one at each side of the Dorsal Unit which is located on the top of the airplane fuselage. T/R-modules are connected to the antenna waveguides to control the beamsteering and the very low sidelobe level. The sidelobe level is supervised by a calibration during operation, using a table of calibration data. The table of calibration data is produced by iterative computer runs of programs performing the two transformations Near-field-to-Far-field and Far-field-to-Waveguide Excitation - the characterization. Characterization to very low sidelobe level in the calculated farfield is possible when using for instance planar nearfield technique to measure an active antenna. The errors at the planar nearfield range are misleadingly compensated for by the characterization. Therefore a minimization together with a continuous control of the noise level is necessary.

Phased-Array Simulation for Antenna Test Range Design
D.J. Van Rensburg, November 1998

A simulation tool used during the design of near-field ranges for phased array antenna testing is presented. This tool allows the accurate determination of scanner size for testing phased array antennas under steered beam conditions. Estimates can be formed of measured antenna pointing accuracy, side lobe levels, polarization purity, and pattern performance for a chosen rectangular phased array of specified size and aperture distribution. This tool further allows for the accurate testing of software holographic capabilities.

Low-Cost Portable Near-Field Antenna Measurement System
D.P. Woollen,A.R. Tillerson, G. Lear, J.M. Snow, W. Slowey, November 1998

The Marine Corps desired a portable test system for the AN/TPS-59 radar antenna (a large, 15.2 feet by 29.1 feet, L-band phased array antenna) to verify on site performance. The test system was also required to be capable of antenna acceptance testing at the overhaul depot. An innovative mechanical design using commercial off-themshelf (COTS) products paved the way for the development of this low-cost system. The low-frequency, moderate-sidelobe antenna characteristics allowed for flexibility in mechanical scanner design. The near-field scanner attaches directly to the antenna and is aligned in place. The Hewlett-Packard 8530 Antenna Measurement System is employed for data collection. An interface from the computer to the antenna was designed for beam­ steering control (BSC). LabVIEW software controls the HP8530, the near-field scanner, BSC, and other miscellaneous RF hardware. Digital Visual Fortran 5.0 and Matlab are used to run the National Institute of Standards and Technology (NIST) near­ field programs.

ICO S-Band Antennas Test Program
P.A. Ilott,B. Arnold, C. Liu, R. Hladek, November 1998

The four antenna subsystems on each of the twelve ICO satellites, includes two eight foot diameter S­ Band active arrays, driven by a digital signal processor (DSP). These phased arrays, each consisting of a triangular lattice arrangement of 127 radiating elements, must be tested for functionality and workmanship, before being integrated onto the spacecraft. With a two-month center to center delivery requirement, standard fabrication and test procedures had to be modified and automated in order to meet schedule without compromising the traditional conservative approach for performance verification. This discussion of the ICO S-Band test program includes descriptions of the nearfield testing, Field Aperture Probe tests, and other tests related to EMI problems (such as transmit to receive isolation and PIM) on the spacecraft, as well as a brief description of the PC-BFN, a rack of special test equipment designed to allow testing of the passive array without the satellite DSP. Emphasis is given to the design of tests compatible with a mass production environment.

Turnkey near-field measurement system for pulse mode applications, A
D.S. Fooshe,K. Thompson, M. Harvey, November 1997

NSI recently delivered a Turnkey Near-field Antenna Measurement System (TNAMS) to the Naval Surface Warfare Center - Crane Division (NSWC-CD) in Crane Indiana. The system supports characterization and calibration of the Navy's active array antennas. TNAMS includes a precision 12' x 9' vertical planar near-field robotic scanner with laser optical position measurement system, dual source microwave instrumentation for multiple frequency acquisition, and a wide PRF range pulse mode capability. TNAMS is part of the Active Array Measurement Test Bed (AAMTB) which supports testing of high power active arrays including synchronization with the Navy's Active Array Measurement Test Vehicle (AAMTV), now under development. The paper summarizes the hardware configuration and unique features of the pulse mode capability for high power phased array testing and the TNAMS interface to the AAMTV and AAMTB computers. In addition, range test data comparing antenna patterns with various pulse characteristics is presented.

Experiences with near field measurements of the active phased array radar PHARUS
M.H. Paquay, November 1997

Measurements of antennas with integrated electronics is an upcoming topic. In many cases the antennas can only work in pulsed mode which requires synchronisation between radar and measurement equipment. Up and down mixing by internal LO's causes additional problems, especially with Near Field measurements where amplitude and phase data is required. Based upon hands-on experience, this paper treats some of the problems and pitfalls related to the Near Field measurements of an active antenna and alignment of the elements by means of backtransformation of the data.

System for testing multiple parameters of active aperture antenna subarrays, A
A.R. Koster,R. Kaffezakis, T. Thomas, November 1997

When a phased array antenna consists of a number of complex subarrays, efficient and accurate testing of the subarrays is essential for overall project success. This paper presents a flexible system for testing various parameters of a subarray of an active aperture phased array antenna including S­parameters, noise figure, spurs, oscillations, and peak and average power. Testing is done for both CW and a variety of pulsed signals. A system block diagram is presented and system architecture explained. Timing diagrams are included for testing multiple states (which correspond to antenna beams), channels, and frequencies. Measured verification results are presented.

Determination of mutual coupling from phased array element patterns
H.M. Aumann (Massachusetts Institute of Technology),F.G. Willwerth (Massachusetts Institute of Technology), November 1996

An examination of mutual coupling effects in a linear phased array is presented. The approach derives mutual coupling coefficients from array element patterns measured in the Fresnel region, at R/D=3. The technique allows edge diffraction effects and mutual coupling effects to be identified and separated. The results are compared with conventional mutual coupling measurements and mutual coupling coefficients determined by numerical integration. The technique is used for far-field pattern reconstruction, and for pattern optimization which corrects mutual coupling effects to the maximum extend possible.

Globalstar satellite near-field measurement systems
G. Hindman (Nearfield Systems Inc.), November 1996

NSI recently completed installation of two large 7m x 7m horizontal planar scanners to support the Globalstar satellite program test activity. These systems were installed at Alcatel in France, and Alenia in Italy. These two systems are similar to the NSI system installed at Space Systems/ Loral in Palo Alto, CA. described in previous AMTA papers. The companies are part of the Globalstar satellite consortium, committed to launching a constellation of satellites for mobile telephone communications. The paper will summarize the hardware configuration and the unique features of the two new test systems including high power phased array testing and the interface to the Globalstar payload for active antenna control and payload testing. In addition, range data comparing all 3 test ranges will be shown.

Automated antenna measurements in a networked environment
D. Lee,S. Mishra, November 1995

Modem antenna measurements require not only fast measurement but also quick transport of data to a multitude of computer for post-processing and analysis. Issues in the of a networked computer architecture for an antenna measurement laboratory are discussed. A case study is presented to highlight some of the considerations. Description and performance of a facility employing the concepts are included.

3-D low frequency radar target imaging
M.J. Gerry,E. Walton, November 1995

The imaging of radar targets is typically accom­ plished by measuring the radar cross section (RCS) of the target as a function of frequency and az­ imuth angle. We measure a third dimension of the RCS by tilting the target and collecting data for conical cuts of the RCS pattern. This third dimension of data provides the ability to estimate the three-dimensional location of scattering centers on the target. Three algorithms are developed in order to process the three-dimensional RCS data.

Accurate boresighting and gain determination techniques
M.A.J. van de Griendt,S.C. van Someren Greve, V.J. Vokurka, November 1995

Boresight and gain determination play an important role in antenna measurements. Traditionally, on outdoor ranges, optical methods are used to determine the boresight. Accuracy requirements better than 0.001 degrees are difficult if not impossible to obtain on outdoor ranges using these method since the effect of incident electromagnetic fields are not taken into account. On indoor ranges no technique is available at present that achieves the desired accuracy demands. In this paper, an improved method for boresighting will be presented. It will be shown that using this technique, desired accuracy demands on both outdoor and indoor can be obtained. Furthermore, the method can also be combined with accurate gain calibration. Advantages and disadvantages of this technique will be discussed.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31