AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Pattern

Design of a short range for testing large phased arrays
L. Goldstone (Norden Systems), November 1989

Large arrays require large separations between the transmit antenna and the antenna under test (AUT) to measure pattern parameters in the far field. For the subject AUT, a range of 6 miles with a spurious signal level of -58 dB was necessary to obtain the required accuracy. Measurements have been performed on a significantly shorter range without serious degradation. The antenna was focused for the angle of electronic scan and the resulting pattern measured. The theoretical far field patterns were compared with the calculated focused patterns for the short range. The maximum sidelobe error of 1/2 dB occurred at 60 degrees scan. There was no noticeable degradation in beamwidth, gain, or foresight at any scan angle. A 6-mile range would have produced a 2-dB sidelobe error. The measured range reflection level was -50 dB. The transmit dish with sidelobes of 22 dB was replaced with an array that had 40 dB sidelobes. This change reduced the reflections to below the required -58 dB. The antenna was focused using a range calibration technique and the measurements substantiated the theory.

Requirements for accurate in-flight pattern testing
C.H. Tang (MITRE Corporation), November 1989

The purpose of this paper is to discuss the accuracy requirement of a generic measurement system for in-flight antenna pattern evaluations. Elements of the measurement technique will be described. An attempt is made to distinguish the measurement requirement for a narrow beam radar antenna in contrast to that for broad beam communication antennas. Major elements of the measurement technique discussed include the flight path geometry, the multipath propagation problem, and the measurement errors. Instrumentation requirements consist of the ground segment, the receive and the tracking subsystems, and the airborne equipment, the radar components and the navigation and attitude sensors. Considering the in-flight antenna pattern testing as a generalized antenna range measurement problem, various sources of measurement errors are identified. An error budget assumption is made on each error component to estimate the overall expected accuracy of the in-flight antenna pattern measurement.

Holographic diagnostics of a phased array antenna from near field measurements
P.A. Langsford (GEC-Marconi Research Centre),M.J.C. Hayes (GEC-Marconi Research Centre), R. Henderson (GEC-Marconi Research Centre), November 1989

A 400 element phased array antenna has been constructed at the GEC-Marconi Research Centre. Each radiating element is fed from its own phase shifter. The radiation patterns of this array have been measured using a recently constructed Cylindrical Near Field Test Facility. The radiation pattern is obtained on a two dimensional grid and contains both amplitude and phase information. It is therefore possible to transform these data back to the array aperture to obtain the array excitation amplitudes and phases. The spatial resolution obtained in the aperture is a function of the angular coverage of the radiation pattern used. The effect of deliberately introduced phase errors on the calculated aperture data is shown.

Mesar active phased array antenna pattern acquisition
E.H. England (Admiralty Research Establishment),R. Young (Plessey Radar Limited), November 1989

Separation of the Antenna from the remainder of the system is not possible with a fully active phased array such as MESAR, since each array element has an associated electronic module which contains amplifiers (separate for transmit and receive), phase shifters, switches, etc. The "antenna" is therefore not reciprocal and it also requires a control system. As a result, the system used for pattern acquisition is considerably more complex than that used for testing conventional antennas and some of the traditional parameters are either not obtainable or require redefining. The methods used for testing the MESAR antenna are given together with details of the range equipment involved.

A Quasi-far-field measurement systems: hardware, software and experimental results
R.E. Shields (CSIRO Division of Radiophysics, Australia),G.M. Simms (CSIRO Division of Radiophysics, Australia), November 1989

The hardware and software developments undertaken to upgrade two far-field measurement facilities - a 12-m anechoic chamber and a 35-m outside range - are described. A method (termed quasi-far-field, QFF) for deriving antenna far-field patterns from a single plane scan at a distance less than the traditional distance of 2D2/? is described. The QFF technique involves pattern sample and subsequent pattern transform and reconstruction, from the easement distance to the far-field distance. A discussion of the limitations inherent in the QFF transform, including range length, is given. Experimental results for measurements made on circular-aperture antennas with both symmetric and asymmetric illumination, and on antennas with elliptical apertures, are described.

Methods of transforming antenna Fresnel region fields to far region fields
K. Wu (Electrospace Systems, Inc.),S. Parekh (Electrospace Systems, Inc.), November 1989

For transforming a Fresnel region pattern to a far-field pattern, we present here two methods, the "discrete beam sampling" method (DBSM) and the "displaced beam" method (DBM), which allow an accurate characterization for both linear as well as circular antenna apertures. Both methods assume a simple Fourier transform relationship between the aperture field distribution and the far-field of the antenna. The Fresnel region field is then essentially perturbed by an aperture quadratic phase error assumed to exist because of the finite distance at which the field pattern is characterized. Numerical simulation and its results are presented to show the accuracy of the reconstructed far-field data. Finally, an error analysis is performed to show the sensitivity of the above two methods.

Application of nonuniform sampling techniques for antenna pattern measurements
Y. Rahmat-Samii (University of California Los Angeles), November 1989

The nonuniform sampling technique utilizes measured (or simulated) amplitude and phase far-field data at nonuniformly sampled data points and constructs the pattern from these limited number of measured data. The technique relies on the fact that the antenna far-field pattern is proportional to the Fourier transform of a function which is related to the induced current on the antenna. The application of nonuniform sampling technique becomes important in the situation for which it will be difficult (or impossible) to measure the far field at regular intervals. In this paper, the application of the nonuniform sampling technique is demonstrated for antenna pattern measurements. The foundation of the technique is first reviewed and the required mathematical steps for the implementation of the technique is summarized. Both one dimensional and two dimensional cases are reviewed with attention given to the applicability of closed form expressions for the determination of the sampling coefficients. Numerical results are presented and comparison to measurements are shown. In particular, the application of this technique to a recently proposed space-station based antenna experiment is presented.

Antenna far-field pattern accuracies at millimeter wave frequencies using the planar near-field technique
M.H. Francis (National Institute of Standards and Technology), November 1989

In recent years there has been an increasing demand for antenna calibrations at millimeter wave frequencies. Because of this the National Institute of Standards and Technology (NIST) has been developing measurement capabilities at millimeter wave frequencies. The development of gain and polarization measurement capabilities have been previously reported. This paper reports on the development of the capability to measure an antenna pattern which has been achieved during the last year. Measurement accuracies of better than 4 dB have been achieved for sidelobes which are 40 dB below the mainbeam peak. NIST is now providing a new measurement service for antenna patterns in the 30-50 GHz frequency range.

Cylindrical wave helicopter antenna pattern measurements, corrections, and comparisons
C.A. Balanis (Arizona State University),C.R. Birtcher (Arizona State University), D.G. Shively (NASA ), G.C. Barber (NASA ), M. Gilreath (NASA Langley Research Center), V.J. Vokurka (Eindhoven University), November 1989

To perform antenna measurements, it is necessary that the entire antenna structure is illuminated by a uniform plane wave. Since almost all sources radiate spherical waves, plane wave field configurations can be achieved locally only at very large distances from the source. The proliferation of compact range designs have reduced the distance required to achieve nearly plane wave field configurations to distances which can be satisfied by indoor facilities. While most compact ranges have been designed to create a nearly plane wave field configuration, at Arizona State University an operational compact range exists which creates a nearly cylindrical wave field structure. The pattern measured under cylindrical wave illumination is transformed, using analytical and numerical methods, to obtain the plane wave response of the antenna system. Measurements have been performed, using the cylindrical wave compact range, of a 15 GHz axial waveguide antenna on a 1/10 scale Advanced Attack Helicopter model. The measurements were then transformed and compared with those made of the same antenna system in a plane wave compact range facility.

A Low cost portable near-field antenna measurement system
D. Slater (Nearfield Systems Incorporated),G. Hindman (Nearfield Systems Incorporated), November 1989

Implementing an antenna test range has traditionally been viewed as a major and costly undertaking, requiring significant long term facility planning, computer hardware interfacing, and software development. This paper describes a complete low cost, yet high accuracy portable near-field measurement system that was privately built for less than $2,000 and interfaced to a PC compatible computer. The design and operation of this system, including the scanner, microwave hardware, and computer system will be described. This system has since been extended into a commercial product capable of providing rapid and accurate measurements of small to medium size feeds and antennas within a small office or lab space at significantly lower cost than standard antenna test techniques. The system has demonstrated an equivalent sidelobe noise level of less than -50 dB, includes a probe corrected far-field transform and holographic back projections, and can output pattern cuts, contour plots, 3D plots, and grey scale images of antenna performance.

A Synthetic aperture imaging method for evaluating anechoic chamber performance
R.G. Immell (Motorola Govt. Elect. Group),S. Brumley (Denmar, Inc.), November 1989

Evaluation methods for analyzing the performance of anechoic chambers have typically been limited to field probing, free space VSWR and pattern comparison techniques. These methods usually allow the users of such chambers to qualify or determine the amount of measurement accuracy achievable for a given test configuration. However, these methods in general do not allow the user to easily identify the reasons for limited or degraded performance. This paper presents a method based on synthetic aperture imagery which has been found usable for finding and identifying anechoic chamber performance problems. Photographs and illustrations of a working SAR imaging/mapping system are shown. Discussions are also given regarding the method's advantages and disadvantages, system requirements and limitations, focusing processing requirements, calibration techniques, and hardware setups. Both monostatic and bistatic configurations are considered and both RCS and antenna applications are discussed. The SAR system constructed to date makes use of a portable HP-8510 based radar placed on a hydraulic manlift for easy system maneuverability and flexibility. The radar antenna is mounted on an 8 foot mechanical scanner directed toward the area to be mapped. An image is processed after each scan of the receive antenna. Measured data and example results obtained using the mapping system are presented which demonstrate the system's capabilities.

Broad band antenna for compact range use
A. Lai (The Ohio State University ElectroScience Laboratory),E.H. Newman (The Ohio State University ElectroScience Laboratory), W.D. Burnside (The Ohio State University ElectroScience Laboratory), November 1989

Due to the limited size of a compact range, an antenna with low sidelobes, broad bandwidth, broad beam, small physical signature, low scattering level and reasonably high power handling are required. Historically, slot line antennas are circuit board type antennas noted for their thin cross-section, low cost of fabrication, scalability and high package density in array applications. A broadband version, fed by a microstrip line (and therefore easily connected to microstrip transceiver circuits etched on the same circuit board) is described in this paper. Test models with different shapes and using different dielectric materials were built and tested. The measured VSWR, radiation and scattering patterns of the various antenna designs are presented.

A Millimeter wave feedhorn for shaped compact ranges
G.M. Briand (Harris Corporation GCSD), November 1988

The design, fabrication, and testing of a high directivity, constant beamwidth feed horn is presented in this paper. The subject feed horn is designed to illuminate a shaped reflector compact range operating from 140 to 170 GHz. Design considerations related to pattern control and VSWR are discussed. Fabrication challenges are also considered. Primary pattern test results are presented and compared to predictions. Integration (into the reflector system) considerations are reviewed and quiet zone performance is discussed.

Time gating of antenna measurements II
D.W. Hess (Scientific-Atlanta, Inc.),V. Farr (Scientific-Atlanta, Inc.), November 1988

Currently many new compact range facilities are being constructed for making antenna pattern measurements indoors. Limited suppression of stray signals ~ due to range layout, confined surroundings and residual absorbing material reflectivity ~ represents a limitation on the accuracy of the measurements made in these facilities. Time-gating of the compact range signal appears to be a very attractive technique to reduce unwanted reflections. The authors have carried out an experimental investigation of time gating in a compact range. It is demonstrated that time-gating can improve the uniformity of the aperture field by removing the feed backlobe radiation; and, it is demonstrated that time-gating can remove the effects on a pattern of certain room reflections and of feed backlobes. When compared to conventional methods of reducing reflections based on placement of absorber, time gating appears equivalent. It does not appear however that time gating improves the conventional methods, except for measuring wide beamwidth antennas.

Cross range processing of patterns for large reflector antennas to obtain radiation centers
T-H. Lee (The Ohio State University ElectroScience Laboratory),W.D. Burnside (The Ohio State University ElectroScience Laboratory), November 1988

A technique to determine the radiation centers of large reflector antennas in a given direction is presented in this paper. Coherent processing is used to determine various radiation centers based on far zone pattern data of the antennas provided that adjacent centers are separated far enough so that their locations can be resolved. Numerical results for processing of two reflector antennas, a prime focus fed and a Cassegrainian, are presented to validate this technique. The diagnostic value of this technique for reflector antennas is demonstrated by processing the actual measured pattern and identifying some unexpected radiation centers. One can also use this technique to fine tune numerical pattern simulations of reflector antennas.

High speed pattern measurements of a multi-port phased array
R.E. Hartman (Flam & Russell, Inc.),M.E. Burdack (Flam & Russell, Inc.), November 1988

This paper describes the measurement requirements of a phased array comprised of three sub-arrays and the test system built to measure it. To evaluate the performance of the array, it is necessary to measure the radiation patterns of all three outputs at various azimuth scan angles. Because the relative phase and amplitude between the elements is an important performance parameter, if data is to be taken "on the fly", then high speed measurements are required. In addition, when taking elevation patterns through the peak of the beam, which has been scanned in azimuth, the polarization of the antenna under test changes with elevation angle. Consequently, since the patterns are to be measured to matched polarization, the transmit antenna polarization must be varied as a function of elevation angle. To complicate matters, this is a non-linear relationship. The test system architecture and resultant performance capabilities are presented.

New near field RCS--and antenna--measurement techniques
V.J. Vokurka (March Microwave Systems B.V.), November 1988

In this paper a new system consisting of a single parabolic reflector and a point source will be presented. Such a system is capable of producing a cylindrical wavefront over a wide frequency range. Moreover, physically large text-zone dimensions can be realized. The principle of operation is identical to that of the near-field/far-field cylindrical scanning, however, the far-field antenna pattern or RCS response can be computed more efficiently by performing a simplified transformation procedure in one dimension only. It will be shown that such a system is suitable for both antenna and RCS measurements. Finally, experimental RCS data will be presented.

Precision compact range feed
K.R. Goudey (Harris Corporation GCSD),L.R. Young (Harris Corporation GCSD), November 1988

This paper describes how corrugated feed horns are designed for compact ranges with tight pattern control. Both the amplitude and phase of the horn pattern must be invariant over a wide frequency band. A horn synthesis computer program has been developed using the JPL HYBRIDHORN computer program as the analysis module which is driven by a Harris developed synthesis code (OPTDES). This paper also discusses launching techniques used to generate the HE(11) hybrid mode in the corrugated horn as well as design methods to eliminate ringing effects observed in both the input waveguide circuits and corrugated horns when used for RCS measurements.

Analysis and measurements of horns in absorber-lined tunnels
G.E. Stewart (The Aerospace Corporation),R.B. Dybdal (The Aerospace Corporation), November 1988

The utility of absorber-lined tunnels to control the sidelobe levels of horns has previously been demonstrated. The use of such a tunnel gives the designer the option of designing a broadband feed, for example, and later tailoring the sidelobe level to meet a given specification. In this paper, a technique for calculating the radiation characteristics of a horn in an absorber-lined tunnel will be presented. The analysis is based on an absorbing phase screen approximation which has been used by one of the authors in analyzing the diffraction of signals around rocket plumes. Propagation through the tunnel is treated as if the wave travels through a sequence of layers in which the absorption depends on the transverse coordinates. The absorbing phase screen model will be developed, and then applied to the analysis of a Narda standard gain horn in a square tunnel which is lined with wedge absorbing material. For the determination of E and H-plane pattern cuts, a two dimensional model can be utilized. In order to determine the radiation pattern over the full range of theta and phi as is required for illuminating a reflector, a three dimensional model is needed. All calculations were implemented in Fortran on an IBM personal computer.

A Low cost, PC based far-field antenna range
D.G. Shively (Virginia Polytechnic and State University),W.L. Stutzman (Virginia Polytechnic and State University), November 1988

A far-field antenna range has been assembled on the roof of the Electrical Engineering building at Virginia Tech. Antenna radiation patterns and polarization patterns can be measured. The system consists of two Scientific-Atlanta azimuth positioners, a Scientific-Atlanta 1711 receiver, a Scientific-Atlanta 1832A amplitude display unit, a DC motor controller, a synchro-to-digital converter, an IBM PC, and signal sources. The DC motor controller has been interfaced to the PC along with the synchro-to-digital converter, forming a closed loop positioning control system that can be used with either of the azimuth positioners. One of the positioners is used for the antenna under test while the other positioner controls the polarization of the transmit antenna. The receiver and amplitude display provide a 60 dB dynamic range for antenna measurements. The PC has been programmed in TURBO Pascal to control the antenna positioner, record antenna patterns, store pattern data on disk, and provide antenna pattern plots. This modular approach provides permanent storage on PC disk of all measurements as well as allowing many plot combinations including linear or logarithmic form and rectangular or polar format.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31