AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

AMTA Paper Archive

Antenna near-field test facility at Ericsson Radio Systems AB
P. Malmborg,A. Molker, C. Barnarp, November 1985

During the last year ERICSSON RADIO SYSTEMS in Moelndal, Sweden, has had a near-field test facility in operation in a clean-room environment. It was been used for spherical near-field testing but during the next year a large planar scanner will be installed in the room.

Automated three-antenna polarization measurements using digital signal processing
J.R. Jones (Scientific-Atlanta, Inc.),D.E. Hess (Scientific-Atlanta, Inc.), November 1985

In this paper we present a three-antenna measurement procedure which yields the polarization of an unknown antenna to an accuracy comparable to that of the improved method of Newell. The complete method is based on step-scan motion of the two polarization axes on which the antenna pairs are mounted. As a special case this step-scan procedure includes the usual single axis polarization pattern method of polarization measurement. This three antenna polarization measurement method can be readily automated and is carried out straightforwardly with the assistance of a minicomputer for data acquisition and data reduction. The data reduction method is based on conventional digital Fourier transform techniques and has the advantage of inherent noise rejection. It utilizes a large number of sample points which greatly overdetermine the parameters to be measured. The method has been verified experimentally with measurements made on multiple overlapping sets of three antennas, as is conventional for this kind of procedure. The data are presented for broad-beam antennas of the type used as near field probe horns.

Alternative sampling techniques for more efficient planar near-field measurements
L.E. Corey (Georgia Tech Research Institute),D.R. O'Neil (Georgia Tech Research Institute), November 1985

Two alternative sampling techniques for planar near-field measurements are discussed. The first technique reduces the number of data points taken by 50% by measuring the field and its differential in one direction at each point. The second technique samples the field on a hexagonal lattice and allows reduction in the number of samples taken by up to 25%. Far-field patterns for an X-band antenna calculated from these alternative near-field sampling schemes are presented and compared with the far-field patterns calculated using conventional planar near-field techniques.

Spherical near-field thermal drift correction using a return-to-peak technique
G.B. Melson (Scientific-Atlanta Inc.),D.W. Hess (Scientific-Atlanta Inc.), J.R. Jones (Scientific-Atlanta Inc.), November 1985

Over the long periods of time needed to acquire spherical near-field data, thermal drift of the system can cause errors in the measurement. The effect of thermal-drift can be removed, if it is monitored during the scanning process. This is accomplished by periodically returning the probe to the near-field peak during acquisition. The same point is re-measured upon each return; and the variations in phase and amplitude are used to produce a correction factor which is applied to each point in the near-field data file. This paper describes the return-to-peak method and the correction algorithm. Experimental results will also be presented.

Optimum near-field probing for improved low sidelobe measurement accuracy
J. Hoffman (Technology Service Corporation),K. Grimm (Technology Service Corporation), November 1985

A novel technique for improved accuracy of sidelobe measurement by planar near field probing has been developed and tested on the modified near field scanner at the National Bureau of Standards. The new technique relies on a scanning probe which radiates an azimuth plane null along the test antenna’s mainbeam steering direction. In this way, the probe acts as a mainbeam filter during probe correction processing, and allows the sidelobe space wavenumbers to establish the dynamic range of the near field measurement. In this way, measurement errors which usually increase with decreasing near field signal strength are minimized. The probe also discriminates against error field which have propagation components in the direction of mainbeam steering, such errors may be due to multipath or scanner Z-position tolerances. Near field probing tests will be described which demonstrate measurement accuracies from tests with two slotted waveguide arrays—the Ultralow Sidelobe Array (ULSA) and the Airborne Warning and Control System (AWACS) array. Results show that induced near field measurement error will generate detectable far field sidelobe errors, within established bounds, at the –60dB level. The utility of te probe to detect low level radar target scattering will also be described.

Blended surface concept for compact range reflector
W.D. Burnside (Ohio State University ElectroScience Laboratory),A. Dominek (Ohio State University ElectroScience Laboratory), R. Barger (NASA Langley Research Center), November 1985

The compact range has been used for many years to measure directive antenna patterns. More recently, however, there has been increased interest to use the compact range for scattering measurements. In order to provide the proper field illumination for such measurements, the traditional designs must be improved in terms of the stray signals coming from the reflector termination. One attempt to improve the field quality in the measurement zone was to use a rolled edge structure added to the basic parabolic reflector. This improved the system performance but required excessively large structures to meet the system requirements. Thus, a novel blended surface was developed which satisfies the measurement requirements without adding large structures. This new design can provide ripple levels no larger that 1/10th of a dB across the target zone as will be shown in the oral presentation.

Feasibility of a large outdoor compact range
E.B. Joy (Georgia Institute of Technology),O.D. Asbell (Georgia Institute of Technology), R.C. Johnson (Georgia Institute of Technology), November 1985

This paper reports on a study conducted by the Georgia Institute of Technology for the U.S. Army Electronic Proving Ground, Fort Huachuca, Arizona to determine the feasibility of a large (50-foot quiet zone) outdoor compact range located at Fort Huachuca. The range is to be operated over the frequency range from 5 to 100 GHz. The main function of the range would be to measure patterns of low gain antennas mounted on military vehicles and aircraft, to determine whether antenna/vehicle interactions were degrading system performance. The paper presents both the electromagnetic and mechanical rational used as a basis for feasibility. The feasibility study considered many possible compact range configurations including the center fed paraboloidal reflector, the offset fed paraboloidal reflector (both prime feed and subreflector feed) and the dual crossed parabolic cylinder (DCPC) reflectors.

The Compact range RCS measurement system
F. Pasquallucci (Hughes Aircraft Company),J. Paul (Hughes Aircraft Company), J.H. Andrews (Harris Corporation), J.K. Conn (Harris Corporation), L.S. Gans (Harris Corporation), November 1985

The Compact Range RCS Measurement System is comprised of the Harris Shaped Compact Range and the Hughes Short Pulse Coherent RCS Measurement System. The range offers a 10 foot spherical quiet zone with less than ±0.25 dB amplitude ripple, 0.2 dB amplitude taper, and ±2 degrees phase ripple. The short pulse system offers a pulse width as small as 5 nsec with range gate increments of 100 psec minimum. The system has a sensitivity of –70 dBsm without integration and –120 dBsm with 50 dB of coherent integration. System linearity is better that ±0.5 dB over the 70 dB instantaneous dynamic range. The Shaped Compact Range offers nearly 98 percent illumination efficiency with negligible spillover which minimizes the required anechoic chamber size and the amount of absorbing material necessary. The block diagram of the system is shown in Figure 1.

The Compact range as an electromagnetic field simulator
R.C. Rudduck (The Ohio State University ElectroScience Laboratory),M.C. Liang (The Ohio State University ElectroScience Laboratory), T-H. Lee (The Ohio State University ElectroScience Laboratory), W.D. Burnside (The Ohio State University ElectroScience Laboratory), November 1985

Compact range reflector systems have been previously used for far zone measurements in which case the feed is located at the reflector focus. It has been determined that near zone antenna pattern and backscatter measurements are feasible if the feed is appropriately located. Feed location information has been determined as a function of the radius of curvature of the near zone incident wavefront at the center of the measurement volume. Furthermore, numerous field quality data have been calculated. Field quality is defined as the closeness of the near zone field distribution in the measurement volume to the desired uniform spherical wavefront. The capability to measure near zone backscatter data was demonstrated with a 4-inch diameter cylinder, 4 feet in length. These measurements were made at 10 GHz, for a near zone range radius of 50 feet in the Ohio State University compact range facility. The near zone backscatter response for this cylinder was also calculated using a GTD analysis. A comparison of the calculations and measurements demonstrate the feasibility of the compact range for near zone backscatter measurements. This development leads to the consideration of compact range reflector systems for more general electromagnetic field simulations. For example, by employing an array feed, instead of a single feed element, the incident field in the measurement volume can be controlled in a rather flexible way. It is the purpose of this paper to explore some possible simulations.

Estimation of the size, location, and power-density of the 'bright spot' in a compact antenna range
P.N. Richardson (Texas Instruments Incorporated), November 1985

When performing far-field testing on large-aperture antennas, the range length 2D2/? (that is needed to achieve a ‘flat’ phase front at the test plane) is sometimes inconviniently long. In these instances, the compact range of Figure 1 may be used as an alternate. In this range, the spherical wave radiated by the range source antenna is converted to an approximately plane wave by a large parabolic reflector. The antenna to be tested is immersed in this plane wave, at a location that is well within the near-field of the reflector. Also, for many antennas of interest, the reflector is likewise in the near-field of the test antenna, although this is not a requirement. (For those cases where the reflector is in the far field of the test antenna, there is little motivation to use a compact range, since a conventional far-field range of the same length would suffice.)

Very broadband measurements of time-varying background returns for a compact radar cross-section measurement range
J.D. Young,E. Walton, P. Bohley, November 1985

There are several background return sources on the Ohio State University Compact Radar Range which affect the sensitivity, accuracy, and dynamic range of the measurement. This paper discusses the magnitude and time delay of the principal background “clutter” mechanisms. Next, data on the time drift properties will be presented, and the relation to system temperature and other physical variations will be discussed. Finally, the impact of system design and operation concepts on these performance factors will be discussed.

Focused synthetic array imagery of compact radar range spurious scattering components
E. Walton (The Ohio State University ElectroScience Laboratory),D.R. Koberstein (The Ohio State University ElectroScience Laboratory), November 1985

The Ohio State University (OSU) ElectroScience Laboratory (ESL) utilizes a parabolic reflector as part of the compact range system [1]. It is necessary to probe the plane wave zone of this reflector in order to measure the purity of the plane wave that is generated. Variations in the amplitude or the phase of the signal received by a probe antenna as the probe is moved linearly across the plane wave region indicate deviations from a pure plane wave in the test zone.

System-2000 simultaneous dual axis control uses position feedbacks
G.E. Bowie (Lockheed-California Company), November 1985

System-2000 instruments were created for pattern range applications. The SD-2000 Synchro Monitor was developed in 1983, the MC-2000 Motor Controller in 1984, and System-2000 Host Processor in 1985. Dual black and white video monitors are being used both for graphics and closed circuit television. A rigid body motion application written in FORTH includes graphic primitives to simulate range components. In this paper, a simple aircraft model is installed on a model tower. A square hole in the vertical stabilizer simulates where a probe or antenna is to be located. The hole is offset from the inter-section of model and tower rotation axes, for discussion. Raster and spiral scanning are examined. Spiral scanning required simultaneous control o two drive motors. Emphasis is placed on using System-2000 dual axis features for motor control and graphic imaging of successive model positions.

A Desktop-computer-based antenna pattern recorder
A. Geva (RAFAEL),B. Cyzs (RAFAEL), Y. Botvin (RAFAEL), November 1985

In this paper we describe the implementation of an antenna pattern recorder using a desktop digital computer to replace the conventional analog electro-mechanical element. This means that all pattern recorder front-panel controls and charts are displayed on and accessed via the computer’s CRT, keyboard and peripherals. It has all the regular features, e.g. choice of scales, pen up/pen down etc., plus a multitude of additional features, obtained owing to the use of a digital computer, which will later be outlined in detail. In spite of the numerous options available, the instrument is very easy to master, requires no preliminary knowledge of computer operation and programming. It is entirely menu-driven and designed to trap most operator errors while maintaining a user-friendly environment suitable for technician-level operation.

Use of 'modern' general-purpose instruments in antenna measurement systems
R. Balaberda (National Research Council Canada),J. Hazell (National Research Council Canada), S. Mishra (National Research Council Canada), November 1985

The Electromagnetic Engineering Section of the National Research Council of Canada maintains a variety of pattern ranges and associated instrumentation to serve the needs of Canadian industry, government departments and universities. An extensive review of the facilities in 1983 revealed the need for significant modifications to maintain the current state-of-the-art level in antenna measurement technology.

Automated data acquisition and analysis system upgrade
H.P. Cotton (Georgia Tech Research Institute),C.H. Green (Georgia Tech Research Institute), D.H. Harrison (Georgia Tech Research Institute), J.L. Estes (Georgia Tech Research Institute), R.A. Gault (Georgia Tech Research Institute), November 1985

This paper is a discussion of the upgrade of an automated antenna pattern data acquisition and analysis system located at the U.S. Army Electronic Proving Ground (USAEPG), Ft. Huachuca, Arizona. The upgrade was necessary as the existing facility was inadequate with respect to frequency coverage, data processing, and measurement speed and accuracy. The upgrade was also necessary in view of USAEPG long range plans to automate a proposed large compact range.

An Experimental evaluation of radome panel performance under various rain conditions
D.B. West (Ford Aerospace & Communications Corporation),F.J. Dietrich (Ford Aerospace & Communications Corporation), November 1985

A number of analytical efforts, but relatively fewer experimental results, have been published on the effects of rain on radome losses at microwave frequencies (1-9). Further, the development of analytical models becomes more difficult as the development of “hydrophobic” (non-wetting) surfaces progresses, because the effect to be modeled becomes increasingly random and statistical.

Inverse synthetic aperture imaging radar
D. Slater (Antenna Systems Laboratory), November 1985

The accurate measurement of radar target scattering properties is becoming increasingly important in the development of stealth technology. This paper describes a low cost imaging Radar Cross Section (RCS) instrumentation radar capable of measuring both the amplitude and phase response of low RCS targets. The RCS instrumentation radar uses wideband FM wave-forms to achieve fine range resolution providing RCS data as a function of range, frequency and aspect. With additional data processing the radar can produce fully focused Inverse Synthetic Aperture Radar (ISAR) images and perform near field transformations of the data to correct the phase curvature across the target region. The radar achieves a range resolution of 4 inches at S-band and a sensitivity of –70 dBsm at a 30 ft range.

Target illumination requirements for low RCS target measurements
W.D. Burnside (Ohio State University ElectroScience Laboratory),L., Jr. Peters (The Ohio State University ElectroScience Laboratory), November 1985

There has been renewed interest in RCS measurements recently especially for the evaluation of low backscatter targets. In order to accurately measure such targets, one needs to evaluate the system performance for such applications. One such performance check is the field quality measured within the target test volume. The question is then asked, “What is a satisfactory amplitude and phase requirement?” The normal 1 dB amplitude specification is not satisfactory because it doesn’t indicate whether the error is due to a field taper or ripple. Taper indicates a uniform phase but variable amplitude; while, ripple indicates the presence of a stray signal. This paper indicates why one should require less than a 1/10th dD ripple error for low RCS target measurements; whereas, a dB taper is satisfactory.

Monostatic near-field radar cross-section measurement
E.B. Joy (Georgia Institute of Technology),B.K. Rainer (Georgia Institute of Technology), B.L. Shirley (Georgia Institute of Technology), November 1985

This paper presents some current measurement results obtained as part of a research program to investigate the theory, technique, apparatus and practicality of monostatic near-field radar cross-section measurement (MNFRCSM).







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30