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Overview

• Discussion of accuracy versus life cycle costs

• Case studies
• Gain methods
• A very accurate positioner
• Fast NF measurements to meet throughput
• Stray signal suppression

• Summary
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Defining Accuracy
• Test Article requirements lead to metrics, which lead to data

collection.
• Our industry standards [1] [2] [3] define “accuracy” as a “level of

uncertainty”.
• For every metric, there are associated error sources that must be

quantified and/or estimated.
• The metric uncertainty is a composite of the uncertainty of the

individual error sources.
• The user tolerance for the metric impacts the cost of achieving that

level of uncertainty.
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Test Article Life Cycle

• The life cycle of a product can generally be divided into phases:

• Development
• Qualification
• Production
• Repair

• The testing needs in each stage of the life cycle will probably differ and have
different cost impacts.
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Measurement System Costs 
• Initial purchase/development cost

• Higher precision to reduce random errors costs more money

• Overhead costs
• Facilities
• Labor

• Periodic calibration for systematic errors
• Cost of internal/external calibration lab
• Calibration may be done by users

• Real time correction for systematic errors will increase system costs
• Multiple measurements mean longer range time
• Post-processing to improve accuracy usually means longer range time
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Case Study 1 – Gain Methods [6]
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Problem Statement
• The National Laboratories have set the standards for gain measurement accuracy
• Published NIST accuracies:

• 3 Antenna NF Extrapolation Range (Gain only)
• Antennas < 1 m, < 50 kg.
• 2 – 30 GHz, +/- 0.1 dB
• > 30 GHz, +/- 0.15 dB

• Near Field Measurements (Gain & Patterns)
• Antennas < 3 m
• 2 – 75 GHz, +/- 0.2 dB

• Measurement campaigns require from 1 to 3 weeks of testing or more
• Question:

• How much effort is required to achieve a desired accuracy?
• or

• Given the measurement objective (prototype validation, production QA, repair 
evaluation, etc.), how accurate can the measurement be in the time allotted?



Test with Confidence TM

Page 8 8

Common Gain Measurement Techniques

• Absolute Methods
• Far Field 3 antenna method
• Near-Field 3 antenna method with extrapolation
• Directivity Measurement with ohmic loss measured by other means

• Transfer Methods
• Near-Field with gain insertion loss measurements
• Far Field measurement against a gain standard
• Near-Field measurement against a gain standard
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Categories of Error Mitigation
• Minimal effort

• Use equipment as is
• Measure once

• Moderate effort
• compensate for some systematic errors based on nominal values
• Multiple measurements for random errors

• Best practices
• Measure and compensate for systematic errors
• More multiple measurements



Test with Confidence TM

Page 10 10

Some Errors and Mitigation
Error Minimal Effort Moderate Effort Best Practices

Gain Standard gain Accept manufacturer’s tolerance Calibrate on an A2LA certified 
range

Calibrate at a national 
standards lab

Absorber thickness 2 wavelengths 5 wavelengths 10 wavelengths

AUT alignment Perform a plunge and rotate 
alignment

Plunge and rotate and small 
raster scan

Perform moderate effort multiple 
times

VSWR/Mutual Coupling Connect antennas to the system Add matching attenuators at 
each antenna port

Measure antenna and 
measurement system reflection 
coefficients and compensate

FF/CATR QZ taper Do nothing Adjust by nominal taper Adjust with field probe data

NF probe pattern Do nothing Probe correction with nominal 
probe pattern

Probe correction with measured 
probe pattern

Connection variation Connect everything 1 time Connect everything for 2-3 
measurements

Connect everything for 5-10 
measurements

AUT S/N Make 1 measurement Make 2-3 measurements Make 5-10 measurements

Polarization mismatch Perform 1 polarization scan of 
the AUT for alignment

Perform multiple polarization 
scans and correct for range 
antenna nominal axial ratio

Perform multiple polarization 
scans and correct for range 
antenna measured axial ratio
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Test Case
• AUT measured as a “golden” antenna

• 24” spun aluminum reflector
• prime focus feed, feed cover not shown
• 26.5 – 40 GHz
• lossy components

• WCA
• cable from WCA to back of reflector
• 2.9 mm bulkhead connector

• “catalog” gain ≈ 40 dBi
• Measured with multiple modes and 

mitigation levels at NSI-MI facilities
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Summary of Error Estimates and Measurement Times

Gain Method
Est Error 

(dB)
Time 

(hours)
Est Error 

(dB)
Time 

(hours)
Est Error 

(dB)
Time 

(hours)
Est Error 

(dB)
Time 

(hours)

Compact Range Gain Tranfser 1.4 0.7 0.7 0.7 0.45 1.4 0.22 3.5
SNF Gain Transfer 1.4 3.1 0.59 3.1 0.44 6.2 0.19 15.5

SNF Gain by Insertion Loss 1.75 2.3 0.69 2.3 0.46 4.6 0.15 11.1
Far Field 3 Antenna 1.1 2 0.4 2 0.34 4 0.16 10

SNF Directivity plus Ohmic Loss Measurement 1.1 2.5 0.35 2.5 0.32 5 0.12 12.5

Minimal Effort
Minimal Effort + 
Matching Pads Moderate Effort Best Practices
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Case Study 2 – A Very Accurate Positioner [7]
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Problem Statement
• An azimuth rotator is needed to support and move a test article.
• The calibration process of the test article requires that the position of the test 

article must be known to a very tight tolerance.
• The rotator and the test article will be surveyed in the test area with a tracking 

laser.
• The requirement allocated to the azimuth rotator is that the absolute position of the 

rotator, within its own frame of reference, must be known within 0.004 degrees 
RMS.

• Solution: Increase the inherent accuracy for random errors and employ 
calibration to reduce systematic errors.
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Standard Positioner
• For size, loading, maximum speed 

and other factors, the selected 
positioner was the NSI-MI MEC-AZ-
80.

• 76 cm turntable
• 14,000 kg. vertical load capacity
• 0.5 RPM maximum speed
• Servo motor drive through right angle 

gear box
• Dual speed synchro sensor standard
• Anti-Backlash Gear included
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Error Factors for Absolute Position
• Sensor

• Inherent accuracy
• Sensor radial runout

• Bearing
• Radial runout
• Gear tooth tolerance

• Gear Train
• Radial runout
• Gear tooth tolerance

• Gear Train & Bearing
• Backlash

Actual Synchro Value

1 σ ~ +/-0.03 degres

0.00 0.05 0.10 0.15-0.15 -0.10 -0.05

Synchro Noise and Jitter
Envelope

IDEAL RUNOUT/ECCENTRICITY
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Absolute Position Error Model (Standard Positioner)

Error is 16X the required error

Individual Error Error Type Error ° peak Error ° rms

Sensor Accuracy random 0.05000 0.03536
Backlash random 0.08000 0.05657

Bearing Radial Runout systematic 0.00280 0.00198
Gear Train Radial Runout systematic 0.00170 0.00120

Sensor Radial Runout systematic 0.00200 0.00141
Bearing Gear Tolerance systematic 0.00370 0.00262

Gear Train Tolerance systematic 0.00250 0.00177

RSS 0.06684
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Improving Sensor Accuracy
• Replace dual speed synchros

with an incremental encoder
• Inherent accuracy improves

from 0.05 degrees to 0.002
degrees

• Standard option for the
positioner

• No developmental costs
• Increased cost for the positioner

• Reduces composite error to
0.0567 degrees RMS

Actual Sensor Value

0.00 0.025 0.05 0.075-0.075 -0.05 -0.025

Synchro Noise and Jitter
Envelope

Encoder Noise and Jitter
Envelope
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Removing Backlash
• Dual Drive Torque Bias is a well-known

technique for removing backlash.
• Two motors are placed on opposite

sides of the bearing. They are always
driven in opposite directions with a
slight difference to keep the gear teeth
engaged.

• In-line gearbox instead of right-angle
gearbox

• Equivalent to a limited slip differential
in an automobile.

• Development cost and increased
hardware cost.

• Reduces composite error to 0.0044
degrees RMS.
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Removing Systematic Errors
• Use a tracking laser to measure the systematic 

runout and tolerance errors. Multiple runs in both 
directions are averaged. The error map is loaded 
into the positioner controller to correct for these 
errors when in use. 

• No developmental cost or hardware cost.
• Initial calibration cost in manufacture.
• Periodic calibration required

• Tracking laser must be owned or rented.
• Tracking laser error must now be included in the 

error budget. 
• Procedure removes the positioner (range) from 

operation for 0.5 days for a laser check of the current 
calibration, 1 day for a re-calibration and verification.

• Reduces composite error to 0.00288 degrees RMS.
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Results
• Costs are normalized to the cost of the standard positioner.
• Initial hardware cost is 2.7 times the standard cost
• Recurring calibration cost is 0.45 of the standard positioner cost over a 5-

year period.

Standard 0.06684 1.00 0.00 0.00 0.00 0.00 1.00

Add Encoder 0.05672 1.00 0.00 0.10 0.00 0.00 1.10
Torque Bias Drive 0.00440 1.00 1.00 0.70 0.00 0.00 2.70
Laser Correction 0.00288 0.00 0.00 0.00 0.15 0.30 0.45

Total 
Cost

Calibration 
Cost 

Standard
Cost 

Composite
Error (° rms)

Condition or 
Improvement

Additional 
Engineering 

Cost

Additional 
Hardware 

Cost

Verification
 Cost
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Case Study 3 – Sacrificing Accuracy for Throughput [8]
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Problem Statement
• This is a case of fitting the testing into the allotted time.
• Production testing of an antenna with an allocated measurement time of one hour.
• The existing range is a spherical near-field range.
• A standard spherical near-field pattern for this antenna on this range requires 3 

hours to perform. This pattern provides the qualification testing uncertainty for the 
antenna.

• An alternate range or building a new range is not an option.
• Functionality after manufacture is more important than specific metrics.

• Solution: Very sparse spherical data collection at a reduced accuracy.
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• If principal plane scans are collected 
in the near-field, they can be 
extrapolated to a full 3D near-field 
pattern that can then be processed 
with standard SNF transforms.

• If the standard SNF pattern requires 
120 scans to cover the sphere, this 
technique reduces data collection 
time by a factor of 60.

• These scans can be collected with 
over-sampling at little cost in time.

• Test Case:  Symmetric aperture 
quad-ridged horn

Sparse SNF Data Collection

25
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Near-Field Primary Polarization Data
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Near-Field Secondary Polarization Data
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Transformed Primary Polarization Data
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Transformed Secondary Polarization Data
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Sparse SNF Data Collection
• The symmetry in the extrapolation:

• Will always lower the directivity.
• In the test case, the directivity dropped from 13.2 dBi to 11.7 dBi, a difference of 1.5 dB
• Alters side lobe structure.

• Data throughput advantage is 60:1 for the test case. Different antennas and frequencies will
affect the ratio.

• This technique works for PNF, CNF and SNF methods.

• More sophisticated sparse techniques can approach full measurement accuracy at the cost
of more scans.

• Plane Polar sampling in PNF and spiral scanning in CNF/SNF are examples of more
sophisticated extrapolation techniques that can improve throughput.
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Case Study 4 – Stray Signal Suppression [8]
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Stray Signals

Shorter and narrower rooms increase the angle of incidence.
Thinner absorber has less bi-static reflectivity. 
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Stray Signals
• This is a case of expanding the measurement time to achieve a desired 

accuracy.

• The Problem: Achieve stray signal levels low enough to meet side
lobe measurement uncertainties when the chamber
does not provide the stray signal levels required.

• Solutions:
• Several post-processing techniques have developed over the years.
• They all involve taking additional data.
• Advanced Antenna Pattern Correction (AAPC)
• Time domain gating
• Mathematical Absorber Reflection Suppression (MARS™)
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AAPC
• Three to five AUT patterns are taken at different distances from the range 

antenna with the total distance around one wavelength.
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AAPC

• This is an expansion of the 
left side lobe at -8 degrees.

• Stray signal suppression is 
around  20 dB at this side 
lobe level.

• Throughput penalty is that 
3X scans are collected.
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Time Domain Gating and MARS™
• Time Domain

• Collect many frequencies over a wide 
band width

• Use FFT-1 to the time domain
• Gate out interferers
• Use FFT to return to the frequency 

domain
• Penalty is increased number of 

frequencies measured
• MARS™

• Offset the AUT from the AUT positioner 
coordinate system origin.

• Use cylindrical modal coefficients to 
eliminate the interferers

• Works for PNF, CNF, SNF, FF
• Penalty is increased sampling density
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Summary
• A modern automated measurement system by itself cannot guarantee low uncertainty 

measurements.  As expected, more effort leads to more accurate measurements
• Systematic errors can be addressed with post-processing or calibration (periodic or real-time)
• Random errors can be addressed with multiple measurements or increased precision in the 

instruments
• Post-Processing generally requires more data than the nominal amount
• Accuracy and throughput are generally in conflict

• Accuracy or throughput may dominate the testing of antennas at different stages in the antenna life
cycle.

• A measurement technique may be required that sacrifices accuracy for speed. The metrologist
must know the increase in measurement uncertainty that will occur.

• A measurement technique may be required that sacrifices throughput to meet accuracy
requirements. The metrologist must know the potential decrease in measurement uncertainty and
the expected throughput degradation.
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