

Radar Cross Section Characterization of a 222.5 GHz Reconfigurable Reflective Surface

<u>Bharath G. Kashyap</u>, Panagiotis C. Theofanopoulos, Yiran Cui, and George C. Trichopoulos Terahertz Electronics Laboratory Electrical, Computer, and Energy Engineering Arizona State University, Tempe, AZ <u>E-mail</u>: Bharath.Kashyap@asu.edu

Antenna Measurement Techniques Association 2021

Why mmWave/THz Systems?

Point-to-point relays

- Improved Coverage.
- Easily embedded systems.
- Reduce the need for more base stations (5G, 6G..) → reduced cost.
- Power efficiency.

Y. Han, et.al., "Large Intelligent Surface-Assisted Wireless Communication Exploiting Statistical CSI," in *IEEE Transactions on Vehicular Technology*, 2019.

Relay aided intelligent reconfigurable surfaces (IRSs)

X. Ying, et.al., "Relay Aided Intelligent Reconfigurable Surfaces: Achieving the Potential Without So Many Antennas," arXiv:2006.06644v1.

Why Reflective Surfaces?

Phased Arrays:

Challenges

φı

- Large hardware footprint.
- High implementation cost.
- Lossy transmission lines at mmWave/THz frequencies → Low efficiency.

Advantages

- Low profile and low weight.
- Relative ease of fabrication. •
- Low implementation cost. ٠
- Non-scalable losses. ٠
- Compatible for high frequency • designs.

Existing Switching Techniques:

- Graphene
- Vanadium-di-oxide •
- HEMT

ARIZONA STATE

UNIVERSITY

Mitigating Quantization Lobes

<u>Straight forward solution</u>: Use more bits!

E.g. 2 −bit design → Quantization lobe level greatly reduced.

Challenges

- Bulky feed and biasing circuit.
- More RF devices/switches.

T. J. Cui, et.al., "Coding Metamaterials, Digital Metamaterials, and Programmable Metamaterials." in *Light: Science and Applications, 2014.*

So what do we need?

A technique to suppress quantization lobes using 1-bit coding

Random Phasing Technique to Suppress Quantization Lobes

Technique first introduced in phased arrays Implementation in Reflective Surfaces Antenna Random $\Delta \phi_{R}$ Phase Delay Antennas Feed Phase Random Δφ_{R1} $\Delta \phi_{R}$ ΔΦ phase Switch delays $\boldsymbol{\varphi}_n$ фı Φ_2 Programmable Phase shifters Feed Network

Existing Designs vs Proposed Design

J. Yin, et.al., "Single-Beam 1-Bit Reflective Metasurface Using Pre-Phased Unit Cells for

Normally Incident Plane Waves," in IEEE Transactions on Antennas and Propagation, 2020

Antenna Measurement Techniques Association 2021

Antenna Measurement Techniques Association 2021

Non-Randomized vs. Randomized RRS

Non-randomized RRS

Randomized RRS

Fabrication Technique

Fabricated Reflective Surfaces

surfaces on an alumina wafer

B. G. Kashyap, P. C. Theofanopoulos, Y. Cui and G. C. Trichopoulos, "Mitigating Quantization Lobes in mmWave Low-Bit Reconfigurable Reflective Surfaces," in IEEE Open Journal of Antennas and Propagation, 2020.

Quasi-Optical Measurement Setup for RCS Characterization

Prototype of the designed reflective surfaces

Measurement Results

Non-Randomized Array

Randomized Array

Measurement Results

Non-Randomized Array

Randomized Array

3dB BW = 8.5 GHz → Fractional BW of 3.8%

Efficiency of the RRS

Inherent System Losse Reflective surface efficiency (n) $\approx 30\%$ lesigned RRS					
Source of Loss			icii		Magnitude of Loss
Alignment + system imperfections		-3.90 dB		Surface wave Loss	-1.80 dB
Quantization Loss		-3.01 dB		Dielectric Loss	-0.17 dB
Aperture Loss		-1.25 dB		Conductor Loss	-3.37 dB
Total loss ≈		-8.16 dB	<	Total loss ≈	-5.34 dB

Conclusions

- A robust technique for mitigating quantization lobes in single bit reconfigurable reflective surfaces with plane wave excitation is proposed.
 - Quantization lobe suppressed by randomizing the phase quantization error.
- Proposed a fabrication technique suitable for large scale production of mmWave /THz reflective surfaces.
- Characterized the RCS of mmWave reflective surfaces using a quasi-optical measurement setup.

Future Work

• Incorporate actual switches to realize reconfigurability.

Thank you!

E-mail: Bharath.Kashyap@asu.edu

Antenna Measurement Techniques Association 2021