AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Polarization

A Rotating Source Polarization Measurement Technique Using Two Circularly Polarized Antennas
Herbert Aumann, Kristan Tuttle, November 2016

This paper combines the standard two-antenna gain measurement technique with the rotating source method for measuring the gain as well as the polarization ratio and tilt angle of the polarization ellipse of a circularly polarized antenna.   The technique is illustrated with two identical helical antennas, one for the source and one for the antenna-under-test (AUT), facing each other. Measurements of the voltage transfer ratio are made over one full 360 degree on-axis rotation of the source while the AUT remains stationary. The rotation causes the phase of the electric field of the principal polarization to rotate in one direction and the phase of the cross polarization to rotate in the opposite direction. A Fast Fourier Transform (FFT) of the data from a single rotation is insufficient to resolve the two polarization components. Leakage from the principal polarization will most likely cover up the low-level opposite polarization signal. However, the FFT resolution can be artificially increased by appending to the measured data, precisely M-1 copies of the data. Now the polarization components will be separated by 2M rotations. Application of a heavy weighting function to the augmented data and a phase compensation to the FFT allows an unambiguous decomposition of the measured voltage transfer ratio into a principal and a cross polarization component. These are then used to calculate antenna polarization characteristics.   The technique was verified in an anechoic chamber with two 6-turn 5.8 GHz helical antennas separated by 4 feet. There was very good agreement between electromagnetic simulations and measurements of the polarization ellipse tilt angle and a -20 dB polarization ratio.

Dual-polarized Monolithic Leaky Wave Antenna Enabled by Additive Manufacturing
Esteban Menargues, Maria Garcia-Vigueras, Emile de Rijk, Juan R. Mosig, November 2016

The use of additive manufacturing (AM) techniques to manufacture microwave and mm-wave passive components has recently been demonstrated through various examples [1]. The term AM comprises all techniques based on the successive building of thin layers of material one on top of each other to create a device. When properly implemented, AM offers the possibility to manufacture light-weight and highly complex devices without generating significant costs increase. Among all AM techniques, Stereo-Lithography (SLA) is the most interesting one for the production of mm-wave components. In SLA, the materials are non-metallic epoxy-based polymers, that require a metallic coating to allow them to become RF functional. In contrast to other AM techniques, SLA manufacturing tolerances and surface roughness permit the design of devices up to 300 GHz. SWISSto12 has recently reported the successful performance of metal plated SLA devices, based on a proprietary chemical plating technology enables the processing of monolithic devices. In this contribution, we aim at exploiting the previously described SWISSto12’s AM-SLA technique [1] to obtain a monolithic directional dual-polarized high-directive Leaky-Wave Antenna (LWA) operating at mm-wave frequencies. The LWA consists of a square cross section waveguide perforated with crossed slots in its top aperture [2]. Moreover, the antenna already includes a side-arm orthomode transducer (OMT) and a smooth waveguide  twist, specifically co-designed with the LWA. The squared waveguide supports the propagation of the two first orthogonal modes, which are radiated through the cross-shaped slots. Thus, the vertically (horizontally) polarized mode inside the waveguide produces theta-polarized (phi-polarized) radiation. The pointing angle is approximately 50°, the same for both beams. The simulated cross-polarization values are very low according to the simulations. Moreover, the directivity of each orthogonal beam is controlled by the dimensions of the cross-shaped slot. Weather observation radars are considered as a privileged potential application of this kind of systems. Two different prototypes of this LWA+OMT subsystem (one operating at 30 GHz and the other one at 60 GHz, both achieving gains above 15 dB) are currently being manufactured by SWISSto12. The prototypes and their performance will be included in the final paper. [1] de Rijk, E.; Silva, J.S.; Capdevila, S.; Favre, M.; Billod, M.; Macor, A.; von Bieren, A.; "Additive Manufactured RF components based of Stereo-Lithography", in Antenna and RF Systems for Space Science 36th ESA Antenna Workshop, 6-9 Oct 2015 [2] M. Garcia-Vigueras, M. Esquius-Morote and J.R.Mosig, "Dual-polarized one-dimensional leaky wave antenna," 9th European Conference on  Antennas and Propagation (EuCAP), Lisbon, Portugal, 13-17 April 2015, pp.1-2.

Measurements and Numerical Simulations to Enhance the Assessment of Antenna Coupling
Lars Foged, Lucia Scialacqua, Andrea Giacomini, Francesco Saccardi, Francesca Mioc, November 2016

The possibility to use Near Field (NF) representation of antenna measurements in terms of equivalent currents, implemented in the commercial tool INSIGHT, is recently available in most CEM solvers. This method allows to use measured data to enhance numerical simulations in complex and/or large scenarios where antennas are installed. In the past this approach has been investigated and validated by determining the antenna radiation pattern in different antenna placement conditions. The aim of this paper is to present how this method can be extended for simulation of antenna coupling. Indeed using this innovative approach, after antennas are measured, their measured models can be imported in CEM tools and coupling with other radiators in arbitrary configurations can be simulated. No information about mechanical and/or electrical design of the measured antenna model are needed by the CEM tool, since the measured NF model in terms of equivalent currents already fully represents the antenna. Investigations have been performed on a H/V polarized array of three identical elements. Only the radiation pattern of the central element of the array has been measured, then starting from the measured data, the coupling between the other elements has been simulated by numerical tools. Accuracy of the procedure has been checked comparing the simulated results with the measured data of the entire array antenna. The testing procedure combining measurements and simulations consists of the following stages: ·      Measurement of the single element of the array and creation of the measured NF source representation. ·      Importing NF source in the CEM tool and placement in the array configuration. ·      Numerical simulation of the antenna coupling between the measured model and the other two elements of the array. Each element has two feeding ports implementing the dual H/V polarization. Preliminary analysis of the coupling is simulated and comparison with the measured data of the entire array agreement is acceptable. This study is currently under development for improving the accuracy of the results and including new test cases of different complexity.

A 6-40 GHz Antenna System for CubeSat Radiometer
Jiu-Kun Che, Chi-Chih Chen, November 2016

A high-gain 6-40 GHz circularly polarized antenna system has been designed for a CubeSat Radiometer Radio Frequency Interference (RFI) Technology Validation mission, which is to demonstrate wideband (6-40GHz) RFI mitigating backend technologies vital for future space-borne microwave radiometers. In stowed configuration, the antenna system needs to fit within a small volume of 10cm (L) by 8cm (W) by 5cm (H). The deployed length of the antenna is 25cm.  The total antenna payload including deployment mechanism needs to be less than 0.2kg. The desired gain is 14 dBic gain at 6 GHz and linearly increased to 22 dBic at 40 GHz in order to minimize the coverage footprint on earth.  The proposed antenna system include three continuous-taper helical antennas due to its simple feeding, circular polarization (CP), and wide bandwidth. They also have desirable light weight and flexible structures. The three helical elements operate at 6-11 GHz, 11-22 GHz and 21-40 GHz, respectively. The diameter of each helical antenna is specially profiled as a function of height to achieve the desired linear gain vs. frequency property. Since the three antenna elements are co-located within a small cavity, their positions were carefully investigated to minimize mutual coupling and coupling to cavity.  This paper presents the antenna design specifications, simulated performances, and preliminary measurement data.

A Reconfigurable Antenna Construction Toolkit with Modular Slotted Waveguide Elements for Arbitrary Pattern Designs
R. Geise, G. Zimmer, B. Neubauer, E. Gülten, A. Geise, November 2016

This contribution presents a universal antenna construction toolkit with slotted waveguide elements that can flexibly combined to form a reconfigurable antenna array capable of providing arbitrary symmetric radiation patterns. The design and the arrangement of radiating elements allow adjusting arbitrary real amplitudes of single radiating elements in a solely mechanical way without any electrical feeding network. Additional modular connecting elements even allow two dimensional and conformal antenna designs with circular and multiple polarizations. With a single toolkit in the Ku-band several design and measurement examples are presented, such as a linear array forming a desired main lobe down to -20dB, and a universal two dimensional antenna array that can switch between vertical, horizontal, LHC and RHC polarization. Given a desired antenna pattern the design procedure allows an automated generation of the physical antenna layout that can mechanically be combined without the need of additional full wave simulations. The waveguide toolkit is easily scalable to any other frequency band just being limited in the upper frequency by manufacturing issues. Another major benefit is that the modular concept of connecting and radiating elements eases the manufacturing where otherwise integral waveguide antennas require much more demanding processes. Different physical realizations of the modular waveguide concept are presented and discussed in the paper and related to the antenna performance. Beside several applications for the universal antenna toolkit, such as investigating illumination issues in scattering theory, educational aspects of teaching group antenna theory are also discussed in this contribution.

Improving the Cross-Polar Discrimination of Compact Antenna Test Range using the CXR Feed
Andrea Giacomini, Lars Foged, Antonio Riccardi, Jörg Pamp, Rasmus Cornelius, Dirk Heberling, November 2016

Compact Antenna Test Range (CATR) provide convenient testing, directly in far-field conditions of antenna systems placed in the Quiet Zone (QZ). Polarization performance is often the reason that a more expensive, complex, compensated dual reflector CATR is chosen rather than a single reflector CATR. For this reason, minimizing the QZ cross-polarization of a single reflector CATR has been a challenge for the industry for many years. A new, dual polarised feed, based on conjugate matching of the undesired cross polar field in the QZ on a full wave-guide band, has recently been developed, manufactured and tested. The CXR feed (cross polar reduction feed) has shown to significantly improve the QZ cross-polar discrimination of standard single reflector CATR systems. In previous papers, the CXR feed concept has been discussed and proved using a limited scope demonstrator and numerical analysis. In this paper, for the first time, the exhaustive testing of the dual polarised feed operating in the extended WR-75 waveguide band (10-16 GHz) is presented. Accuracy improvements, achieved in antenna cross-polar testing, using this feed is also illustrated by measured examples.

Correcting Polarization Distortion in a Compact Range Feed
Brett Walkenhorst, David Tammen, November 2016

A high quality antenna feed is an essential element of a compact antenna test range (CATR) in order to ensure the range can achieve the necessary stability in beam width, phase center and the necessary purity of polarization throughout the range’s quiet zone. In order to maintain the requisite quality, such feeds are typically 1) single-port and 2) cover a relatively limited band of frequencies. It is desirable to have a single dual ported, broadband feed that covers multiple waveguide bands to eliminate the need for a polarization positioner and avoid the difficulty associated with changing feeds for a single antenna measurement. Though some such feeds exist in the market, with such feeds, we often see a reduction in polarization purity across the band of interest relative to the more band limited feeds. Previous attempts to utilize dual-port probes and/or extend the bandwidth of the feed have resulted in degraded performance in terms of beam pattern and polarization purity. In an attempt to overcome some of the deficiencies above, the authors have applied polarization processing to dual-pol antennas to correct for the impurity in polarization of the antenna as a function of frequency. We present here a broadband CATR feed solution using a low-cost, dual-port sinuous feed structure combined with polarization processing to achieve low cross-pol coupling throughout the quiet zone. In the following paper, the feed structure, polarization theory, and processing algorithm are described. We also present co- and cross-pol coupling results before and after correcting for the polarization distortion using data collected in two CATRs in Atlanta, GA and Asia.

Minimum Scattering Probe for High Accuracy Planar NF Measurements
Andrea Giacomini, Lars Foged, Roberto Morbidini, Luca Tancioni, John Estrada, Jim Acree, November 2016

Dual polarized probes are convenient for accurate and time efficient Planar Near Field (PNF) antenna testing. Traditional probe designs are often bandwidth limited and electrically large leading to high scattering in PNF measurements with short probe/AUT distances. In this paper, an octave band probe design with minimum scattering characteristics is presented. The scattering minimization is largely obtained by a very small axially symmetric aperture of 0.4? diameter at the lowest frequency. The aperture also provide a near constant directivity in the full bandwidth and very low cross polar. The probe is fed by a balanced ortho-mode junction (OMJ) based on inverted quad-ridge technology and external feeding circuitry to obtain high polarization purity.

Indoor 3D Spherical Near Field RCS Measurement Facility: 3D RADAR Images From Simulated And Measured Data
Pierre Massaloux, Pierre Minvielle, November 2016

Indoor RCS measurement facilities are usually dedicated to the characterization of only one azimuth cut and one elevation cut of the full spherical RCS target pattern.  In order to perform more complete characterizations, a spherical experimental layout has been developed at CEA for indoor Near Field monostatic RCS assessment. This experimental layout is composed of a 4 meters radius motorized rotating arch (horizontal axis) holding the measurement antennas while the target is located on a polystyrene mast mounted on a rotating positioning system (vertical axis). The combination of the two rotation capabilities allows full 3D near field monostatic RCS characterization. This paper details a RCS measurement technique and the associated-post processing of raw data dedicated to the localization of the scatterers of a target under test. A specific 3D radar imaging method was developed and applied to the fast 3D spherical near field scans. Compared to classical radar images, the main issue is linked with the variation of polarization induced by the near-field 3D RCS facility. This method is based on a fast and efficient regularized inversion that reconstructs simultaneously HH, VV and HV 3-D scatterer maps. The approach stands on a simple but original extension of the standard multiple scatterer point model, closely related to HR polarimetric characterization. This algorithm is tested on simulated and measured data from a metallic target. Results are analyzed and compared in order to study the 3D radar imaging technique performances.

Implementation of a VHF Spherical Near-Field Measurement Facility at CNES
Gwenn Le Fur, Guillaume Robin, Nicolas Adnet, Luc Duchesne, Daniel Belot, Lise Feat, Kevin Elis, Anthony Bellion, Romain Contreres, November 2016

Needs of antenna measurements at low VHF range require the development of specific facilities. Costs saving could be found by reusing existing chambers and extending the frequency band down to few tens of MHz, especially if the implementation of such a system is performed in undersized chambers with already existing absorbers. CNES began such an adaptation in the 2000’s by adding a VHF measurement probe (80-400 MHz) in their CATR chamber which allows performing spherical single probe Near Field measurement thanks to the existing positioner. In the past four years, intensives studies have been led to reduce uncertainties onto measurements results and to wide again the lower frequency down to 50 MHz. Major error terms were identified and both a new measurement probe and post processing tools have been designed and implemented. This paper focuses on the hardware and software upgrades. Details will be first provided on the mechanical upgrades of the probe positioner, aiming to improve the accuracy and the repeatability of the positioning, as well as the ergonomic usage for saving installation time. A dedicated reference antenna in gain and polarization has been developed and validated. Such reliable reference antennas at this frequency range are a key point to reduce uncertainties onto measurement results. Finally, optical tool for aligning the measurement probe and the AUT as well as the post processing tool will be presented.

Phaseless Near-Field Antenna Measurement Techniques – An Overview
Olav Breinbjerg, Javier Fernández Álvarez, November 2016

For near-field antenna measurement it is sometimes desirable or necessary to measure only the magnitude of the near-field - to perform so-called phaseless (or amplitude-only or magnitude-only) near-field antenna measurements [1]. It is desirable when the phase measurements are unreliable due to probe positioning inaccuracy or measurement equipment inaccuracy, and it is necessary when the phase reference of the source is not available or the measurement equipment cannot provide phase. In particular, as the frequency increases near-field phase measurements become increasingly inaccurate or even impossible. However, for the near-field to far-field transformation it is necessary to obtain the missing phase information in some other way than through direct measurement; this process is generally referred to as the phase retrieval. The combined process of first measuring the magnitudes of the field and subsequently retrieving the phase is referred to as a phaseless near-field antenna measurement technique. Phaseless near-field antenna measurements have been the subject of significant research interest for many years and numerous reports are found in the literature. Today, there is still no single generally accepted and valid phaseless measurement technique, but several different techniques have been suggested and tested to different extents. These can be divided into three categories: Category 1 – Four magnitudes techniques, Category 2 – Indirect holography techniques, and Category 3 -Two scans techniques. This paper provides an overview of the different phaseless near-field antenna measurement techniques and their respective advantages and disadvantages for different near-field measurement setups. In particular, it will address new aspects such as probe correction and determination of cross-polarization in phaseless near-field antenna measurements. [1] OM. Bucci et al. “Far-field pattern determination by amplitude only near-field measurements”, Proceedings of the 11’th ESTEC Workshop on Antenna Measurements, Gothenburg, Sweden, June 1988.

A Novel Customized Spline-Profiled mm-Wave Horn Antenna for Emerging High Performance CubeSats
Vignesh Manohar, Joshua Kovitz, Yahya Rahmat-Samii, November 2016

The miniaturization of modern electronics has led to the development of a new class of small satellites called CubeSats. The small size facilitates launching the CubeSats as secondary payloads, significantly reducing launch costs. The scientific community is actively investigating the potential of deployable reflectors, reflectarrays and membrane antennas to accommodate the high data rate and resolution requirements for future CubeSat missions. The development of such deployable high gain antennas significantly broadens the horizons for advanced CubeSat missions at low costs. Our goal is to develop novel, practical antenna concepts that can support these emerging applications. Horn antennas are frequently used as feeds for deployable reflector antennas. With the reflector itself occupying significant space within the CubeSat, it is critical that the feed occupies minimal volume. The horn aperture dimensions are usually fixed in satisfying the -10dB edge illumination requirements set by the reflector design. For pyramidal or conical horns, the length is limited by the quadratic phase error at its aperture. Special techniques must be used to achieve desired performance when horn length is a major constraint. Potter horns use a stepped profile to create a dual-mode distribution to provide low cross polarization at the cost of reduced bandwidth and complexity of prototyping. Corrugated horns are also capable of providing low sidelobes and cross polarization, but are expensive to fabricate and are typically heavier.  Optimization techniques offer the possibilities of handling multiple design parameters, while allowing the designer to put more emphasis on critical constraints. We employ a novel spline-profiled smooth walled horn design that strikes a balance between ease of fabrication, desired radiation characteristics and overall volume. Particle Swarm Optimization (PSO) was used to optimize the horn profile for the desired beamwidth, length, cross polarization level and backlobe level. Detailed study of the aperture field distributions further illustrate the novelty of our design. The performance of the designed horn is validated using UCLA’s tabletop bipolar planar near field measurement facility. Thus, the power of optimization and elegance of monotonic splines was used to design a key component for future deployable reflector systems in CubeSats.

A Polynomial Approximation for the Prediction of Reflected Energy from Pyramidal RF Absorbers
Vince Rodriguez, Edwin Barry, November 2016

Indoor antenna ranges must have the walls, floor and ceiling treated with RF absorber. The normal incidence performance of the absorber is usually provided by the manufacturers of the materials, however, the bi-static or off angle performance must also be known. Some manufacturers provide factors at discrete electrical thickness for a discrete range of incident angles. This approximation is based on the curves presented in [1]. In reference [2], a polynomial approximation was introduced. In this paper, a more accurate approximation is introduced. Pyramidal RF absorber is modeled using CST’s frequency domain solver. The numerical results are compared to results from other numerical methods. The highest reflectivity of the two principal polarizations for a given angle of incidence and thickness of material is calculated. Different physical thickness pyramids are modeled. Once the worst case reflectivity is calculated, a polynomial curve fit is done to get a set of equations that provide the bi-static performance for absorber as a function of angle of incidence and thickness of material. The equations can be used to predict the necessary RF absorber to treat the walls of an indoor range.

Dependence of Antenna Cross-polarization Performance on Waveguide-to-Coaxial Adapter Design
Vince Rodriguez, Edwin Barry, Steven Nichols, November 2016

Antennas utilized as probes, sources, and for gain comparison are typically specified to have excellent cross polarization levels, often on the order of 50 dB below the primary polarization component. In many cases, these antennas are fed with a waveguide-to-coaxial adapter, which can be sourced from a multitude of vendors. Depending on the design and construction of the adapter, and the distance from the excitation probe to antenna aperture, the adapter itself can contribute significantly to the degradation of the polarization purity of the antenna. These adapters typically use one of several methods to achieve a good impedance match across their bandwidths, including tuning screws, posts and stubs. These tuning elements may be arranged asymmetrically and can cause the waveguide to be overmoded locally. Additionally, there is wide variance in the separation of the adapter excitation probe and waveguide electrical flanges, which may not be long enough to suppress the higher order modal content. In this paper, we study the effects of adapter to antenna aperture coupling, including the coupling of fields local to the current probe as well as those that are induced by design asymmetries. The results of the analysis lead to a number of rules of thumb which can be used to ensure that the antenna polarization purity is optimized.

Precise Determination of Phase Centers and Its Application to Gain Measurement of Spacecraft-borne Antennas in an Anechoic Chamber
Yuzo Tamaki, Takehiko Kobayashi, Atsushi Tomiki, November 2016

Precise determination of antenna phase centers is crucial to reduce the uncertainty in gain when employing the three-antenna method, particularly operated over a short range-such as a 3-m radio anechoic chamber, where the distance between the phase centers and the open ends of an aperture antenna (the most commonly-used reference) is not negligible, compared with the propagation distance. An automatic system to determine the phase centers of aperture antennas in a radio anechoic chamber has been developed and the absolute gain of horn antennas have been thereby evaluated with the three-antenna method. The phase center of an X-band horn was found to migrate up to 55 mm from the open end. Uncertainties in the gain were evaluated in accordance with ISO/IEC Guide 93-3: 2008. The 95% confidence interval of the horn antenna gain was reduced from 0.39 to 0.25 dB, when using the phase center location instead of the open end. Then the gains, polarization, and radiation pattern of space-borne antennas were measured: low-, medium-, and high-gain X-band antennas for an ultra small deep space probe employing the polarization pattern method with use of the horn antenna. Comparison between the radiation properties with and without the effect of spacecraft bus was carried out for low-gain antennas. The 95% confidence interval in the antenna gain decreased from 0.60 to 0.39 dB.

Characterization of Dual-Band Circularly Polarized Active Electronically Scanned Arrays (AESA) Using Electro-Optic Field Probes
Kazem Sabet,Richard Darragh, Ali Sabet, Sean Hatch, November 2015

The design of active electronically steered arrays (AESA) is a challenging, time-consuming and costly endeavor. The design process becomes much more sophisticated in the case of dual-band circularly polarized active phased arrays, in which CP radiating elements at two different frequency bands occupy a common shared aperture. A design process that takes into account various inter-element and intra-element coupling effects at different frequency bands currently relies solely on computer simulations. The conventional near-field scanning systems have serious limitations for quantifying these coupling effects mainly due to the invasive nature of their metallic probes, which indeed act as receiving antennas and have to be placed far enough from the antenna under test (AUT) to avoid perturbing the latter’s near fields. In recent years, a unique, versatile, near-field mapping/scanning technique has been introduced that circumvents most of such measurement limitations thanks to the non-invasive nature of the optical probes. This technique uses the linear Pockels effect in certain electro-optic crystals to modulate the polarization state of a propagating optical beam with the RF electric field penetrating and present inside the crystal. In this paper, we will present near-field and far-field measurement data for a dual-band circularly polarized active phased array that operates at two different S and C bands: 2.1GHz and 4.8GHz. The array uses probe-fed, cross-shaped, patch antenna elements at the S-band and dual-slot-fed rectangular patch elements at the C-band. At each frequency band, the array works both as transmitting and receiving antennas. The antenna elements have been configured as scalable array tiles that are patched together to create larger apertures.

Experimental Validation of Improved Fragmented Aperture Antennas Using Focused Beam Measurement Techniques
James Maloney,John Schultz, Brian Shirley, November 2015

In the late 1990’s, Maloney et al. began investigating the design of highly pixelated apertures whose physical shape and size are optimized using genetic algorithms (GA) and full-wave computational electromagnetic simulation tools (i.e. FDTD) to best meet the required antenna performance specification; i.e. gain, bandwidth, polarization, pattern, etc. [1-3].  Visual inspection of the optimal designs showed that the metallic pixels formed many connected and disconnected fragments.  Hence, they coined the term Fragmented Aperture Antennas for this new class of antennas.  A detailed description of the Georgia Tech design approach is disclosed in [4].  Since then, other research groups have been successfully designing fragmented aperture antennas for other applications, see [5-6] for two examples. However, the original fragmented design approach suffers from two major deficiencies.  First, the placement of pixels on a generalized, rectilinear grid leads to the problem of diagonal touching. That is, pixels that touch diagonally lead to poor measurement/model agreement.  Other research groups are also grappling with this diagonal touching issue [7]. Second, the convergence in the GA stage of the design process is poor for high pixel count apertures (>>100).            This paper will present solutions to both of these shortcomings.  First, alternate approaches to the discretization of the aperture area that inherently avoid diagonal touching will be presented.  Second, an improvement to the usual GA mutation step that improves convergence for large pixel count fragmented aperture designs will be presented. Over the last few years, the authors have been involved with developing the use of the focused beam measurement system to measure antenna properties such as gain and pattern [8].  A series of improved, fragmented aperture antenna designs will be measured with the Compass Tech Focused Beam System and compared with the design predictions to validate the designs. References:  [1] J. G. Maloney, M. P. Kesler, P. H. Harms, T. L. Fountain and G. S. Smith, “The fragmented aperture antenna: FDTD analysis and measurement”, Proc. ICAP/JINA Conf. Antennas and Propagation, 2000, pg. 93. [2] J. G. Maloney, M. P. Kesler, L. M. Lust, L. N. Pringle, T. L. Fountain, and P. H. Harms, “Switched Fragmented Aperture Antennas”, in Proc. 2000 IEEE Antennas and Propagations Symposium, Salt Lake City, 2000, pp. 310-313. [3] P. Friederich, L. Pringle, L. Fountain, P. Harms, D. Denison, E. Kuster, S. Blalock, G. Smith, J. Maloney and M. Kesler, “A new class of broadband planar apertures,” Proc. 2001 Antenna Applications Symp, Sep 19, 2001, pp. 561-587. [4] J. G. Maloney, M. P. Kesler, P. H. Harms and G. S. Smith, “Fragmented aperture antennas and broadband antenna ground planes,” U. S. Patent # 6323809, Nov 27, 2001. [5] N. Herscovici, J. Ginn, T. Donisi, B. Tomasic, “A fragmented aperture-coupled microstrip antenna,” Proc. 2008 Antennas and Propagation Symp, July 2008, pp. 1-4. [6] B. Thors, H. Steyskal, H. Holter, “Broad-band fragmented aperture phased array element design using genetic algorithms,” IEEE Trans. Antennas Propagation, Vol. 53.10, 2005, pp. 3280-3287. [7] A. Ellgardt, P. Persson, “Characteristics of a broad-band wide-scan fragmented aperture phased array antenna”, EuCAP 2006, Nov 2006, pp. 1-5. [8] J. Maloney, J. Fraley, M. Habib, J. Schultz, K. C. Maloney, “Focused Beam Measurement of Antenna Gain Patterns”, AMTA, 2012

Mercury MOM:  A Full Wave Prediction Tool for Problem Sizes to Several Million Unknowns on PC Workstations
John Shaeffer, November 2015

Abstract: Essential to the measurement process is the ability to model expected target electromagnetic behavior. As test articles become electrically large, the traditional and preferred full wave prediction tools (where all the interaction physics are included in the formulation) become unwieldy due to limited computer resources of time/memory/costs. The objective of this paper is to introduce to the measurement community a frequency domain Method of Moments EM prediction tool which significantly advances the electrical size capability of such codes. Mercury MOM is a combined surface and volume integral equation monostatic scattering code. Surface boundary condition capabilities include PEC, Dielectric, IBC, RCard, Thin Dielectric, and PMC. Volume complex dielectric properties may inhomogeneous. The full complex polarization scattering matrix is computed for each plane wave incidence angle. Spatial grouping of unknowns leads to low rank interaction matrix blocks between groups. This allows for using the Adaptive Cross Approximation to perform all of the solutions steps: Filling the Z matrix; Performing the block LU decomposition; and Performing the block LU Solve. Memory and operation count requirements are significantly reduced. A very key feature of Mercury MOM is that it solves the system matrix using full LU factorization rather than using an iterative solver. This means that: 1) There are no iterative convergence issues; and 2) There may be any number of RHS illumination angles. The background physics and mathematics of why such capability is possible will be briefly presented followed by a number of scattering examples demonstrating electrical size capability. Included will be results for a PEC corner reflector right angle cone geometry with radius = height = 54.8 lambda resulting in four million unknowns and 7202 right hand sides which was solved on a PC workstation.

Estimating Measurement Uncertainties in Compact Range Antenna Measurements
Stephen P. Blalock,Jeffrey A. Fordham, November 2015

Methods for determining the uncertainty in antenna measurements have been previously developed and presented. The IEEE recently published a document [1] that formalizes a methodology for uncertainty analysis of near-field antenna measurements. In contrast, approaches to uncertainty analysis for antenna measurements on a compact range are not covered as well in the literature. Unique features of the compact range measurement technique require a comprehensive approach for uncertainty estimation for the compact range environment. The primary difference between the uncertainty analyses developed for near-field antenna measurements and an uncertainty analysis for a compact range antenna measurement lies in the quality of the incident plane wave illuminating the antenna under test from the compact range reflector. The incident plane wave is non-ideal in amplitude, phase and polarization. The impact of compact range error sources on measurement accuracy has been studied [2,3] and error models have been developed [4,5] to investigate the correlation between incident plane wave quality and the resulting measurement uncertainty. We review and discuss the terms that affect gain and sidelobe uncertainty and present a framework for assessing the uncertainty in compact range antenna measurements including effects of the non-ideal properties of the incident plane wave. An example uncertainty analysis is presented. Keywords: Compact Range, Antenna Measurement Uncertainty, Error Analysis References: 1.     IEEE Standard 1720-2012 Recommended Practices for Near-Field Antenna Measurements. 2.     Bingh,S.B., et al, “Error Sources in Compact Test Range”, Proceedings of the International Conference on Antenna Technologies ICAT 2005. 3.     Bennett, J.C., Farhat, K.S., “Wavefront Quality in Antenna Pattern Measurement: the use of residuals.”, IEEE Proceedings Vol. 134, Pt. H, No. 1, February 1987. 4.     Boumans, M., “Compact Range Antenna Measurement Error Model”, Antenna Measurement Techniques Association 1996 5.     Wayne, D., Fordham, J.A, Mckenna, J., “Effects of a Non-Ideal Plane Wave on Compact Range Measurements”, Antenna Measurement Techniques Association 2014

Investigation of Higher Order Probe Corrected Near-Field Far-Field Transformation Algorithms for Precise Measurement Results in Small Anechoic Chambers with Restricted Measurement Distance
Yvonne Weitsch,Thomas. F. Eibert, Raimund Mauermayer, Leopold G. T. van de Coevering, November 2015

For today's sophisticated antenna applications, the accurate knowledge of 3D radiation patterns is increasingly important. To measure the antennas under far-field conditions over a broad frequency band is hereby hardly impossible. By near-field to far-field transformation, one can overcome the difficulties of limited measurement distances. In common spherical near-field antenna measurement software, the transformation based on spherical mode expansion is typically implemented. These software tools only provide to correct the influence of first order azimuthal probe modes. The influence of the probe’s higher order modes though increases with shorter measurement distances. To measure a broad frequency range in one measurement set-up and to save time, dual ridged horns are popular candidates since they operate over a wide frequency range. The drawback is that they are probes of higher order. In this contribution, we will present an investigation on near-field measurements which are transformed into the far-field deploying the transformation technique based on spherical modes which is extended by a higher order probe correction capability. The resulting diagrams comparing first and higher order probe correction show that a correction is important in particular for the cross polarization In addition, the near-field data is transformed with an algorithm which employs a representation by equivalent currents. In this method, a higher order probe correction based just on the probe’s far-field pattern is integrated. The equivalent currents supported by an arbitrary Huygens surface allows to reconstruct the current densities close to the actual shape of the AUT which is mandatory for precise antenna diagnostics. Another issue needs to be accounted for regarding limited measurement distances and spherical modal expansion. While representing the AUT and the probe in spherical modes the radii of the spheres grow the more modes are included which depends on the sizes of the TX and the RX antennas. It has to be ensured that both spheres do not interfere.  All measurements were carried out in the anechoic chamber of our laboratory in which measurements starting at 1 GHz are practicable according to the dimension of the chamber and of the absorbers. Due to our restricted measurement distance of 0.57 m, all the above mentioned rules need to be considered. In conclusion, small anechoic chambers are also capable of delivering precise antenna measurements over a broad frequency range due to algorithms capable of higher order probe correction.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30