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Abstract—The sampling of the field first-order spatial derivative, 

in addition to the field itself, enables an increase of the sampling 

step to twice that of the standard sampling criterion – and thus 

facilitates a reduction of the measurement time.  Here, we 

investigate so-called derivative probes and their usage for 

spherical near-field antenna measurements.   

I. INTRODUCTION 

The principle of sampling a signal derivative in addition to 
the signal itself was suggested by Shannon in 1949 [1]. An 
early application of this principle to antenna measurements was 
reported by Corey and O’Neil for planar near-field antenna 
measurements in 1985-86 [2]-[3],  and  recently by the present 
authors for spherical near-field antenna measurements in 2022-
24 [4]-[8].  These works demonstrated that the sampling of the 
signal as well as the signal derivative enables the sampling step 
to be increased to twice – and thus the number of sampling 
points to be reduced to half – that of the standard sampling 
criterion.  Obviously, this reduction of sampling points may 
facilitate a corresponding reduction of the measurement time. 

Our 2023 AMTA paper [6] investigated the feasibility of 
derivative sampling assuming that the probe signal derivative 
was known – from either a spectrum of the probe signal or 
from two nearby probe signal samples using the finite 
difference ratio.  The focus was on the use of the probe signal 
derivative rather than on the measurement of this derivative. 

The objective of the present work is to investigate various 
aspects of probe antennas for measuring field derivatives.  An 
antenna capable of providing one signal related to the incident 
field as well as another signal related to the spatial derivative of 
the incident field may be referred to as a derivative probe – as  
opposed to a standard probe providing only the former signal. 
To the authors’ best knowledge, such a derivative probe has not 
yet been developed and employed for antenna measurements.  
Indeed, for all experiments reported in the abovementioned 
works, the derivative was obtained from two nearby probe 
signal samples using the finite difference ratio.  Though this 
may also be a practical procedure if employed with oscillating 
scans [6]-[7], it will be more efficient using an actual derivative 
probe.   

With a standard probe, the measurement system does not 
sample exactly the field but a quantity closely related to the 

field - with the influence of the probe being known and 
expressed in terms of the standard probe receiving coefficients.  
Similarly, derivative probes need not sample exactly the 
derivative of the field but just a quantity closely related to the 
derivative – as long as the influence of the derivative probe is 
known and expressed in terms of the derivative probe receiving 
coefficients.  The essential point is to sample, in each sampling 
point, two sufficiently independent quantities enabling the 
solution of the near-field transmission formula. 

This paper is organized as follows:  Section II presents a 
numerical investigation, based on experimentally measured 
data and thus including measurement noise, for a derivative 
probe of non-zero extent; this probes measures neither the field 
nor the field derivative in a single point but quantities related to 
these – with its influence expressed in terms of probe receiving 
coefficients. Section III recalls the sum and difference pattern 
property of the mono-pulse antenna known from radar 
technology since this may form the basis for the design of 
derivative probes; this Section also presents designs of simple 
derivative probes based on open-ended rectangular wave 
guides with proper excitations as well as the  spherical wave 
expansions for these derivative probes. Finally, Section IV 
presents conclusions. 

II. DERIVATIVE PROBE MEASUREMENT  

This Section II presents an experimental/numerical 
investigation for a full-circle measurement of a C-band antenna 
under test (AUT) using a derivative probe. 

A. Reference Signal and Spectrum   

The reference is based on an experimental full-circle (360°) 
E-plane measurement of a Scientific Atlanta 12-3.9 standard 
gain horn at 5.3 GHz using a dual-port conical-horn probe at a 
measurement distance of 6.1 m and employing on-the-fly 
sampling with a sampling step of 0.1° and a time-wise 
sampling rate of 147 Hz.  Fig. 1 (top) shows the reference 
spectrum Wn and the reference signal w; these constitute a 
Fourier series pair,  
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The AUT minimum sphere gives a truncation number N = 
44 and thus a standard sampling step of 4°.  With the much 
smaller sampling step of 0.1°, corresponding to a truncation 
number N = 1799, it is possible to isolate the higher-order 
modes representing measurement noise to study the effect of 
this on the performance of the derivative sampling.  Fig. 1 
(bottom) shows the signal w44 based on the part of the spectrum 
with N = 44, the signal w1799 based on the entire spectrum, and 
the equivalent error signal (EES) possessing an RMS of -64 
dB.  Hence, the measurement has a good signal-to-noise ratio, 
but it could be even better using a lower sampling rate than 147 
Hz. 

 

 

Figure 1.  Top: reference spectrum based on measurement with 

u = 0.1° and thus truncation number N = 1799.  Bottom: 
reference signals based on reference spectrum with N = 44 and 
N = 1799, respectively, as well the equivalent error signal 
quantifying their difference;  RMS(EES) = -64 dB. 

B. Derivative Probe Model and Measurement 

The employed derivative probe consists of an even number 
L of point elements positioned along the measurement circle 

with angular separation L, see Fig. 2; each element gives a 
signal according to (1a).  The derivative probe has 2 ports, a 
sum port and a difference-port, the signals of which can be 
expressed as 
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where ul is the position of the l’th element  

( 1 2 ) / 2lu u L l L= − + −  . (2b) 

An example of the derivative probe patterns is shown in Fig. 3. 

 

Figure 2.  Derivative probe formed as an array of L point 

elements positioned along the measurement circle with 

angular separation L.   

 

Figure 3.  Derivative probe radiation patterns. The probe has L 

= 24 point elements with angular separation L = 0.125°. 

 



The received signals at the sum and difference ports of the 
derivative probe can be obtained numerically using (2) with the 
signal for each element calculated from (1a) with the reference 
spectrum in Fig. 1.  While the standard sampling of only the 

signal requires a sampling step u = 4°, the use of the 

derivative probe allows the sampling step to be u = 8°.  The 
obtained sum- and difference-port signals are shown in Fig. 4; 
in this case, the entire spectrum is used with N = 1799 to 
include the effect of measurement noise. The sum-port signal 
obviously resembles the reference signal in Fig. 1; but in itself 
it is under-sampled by a factor of 2.  The difference-port signal 
is of course notably weaker – due to the on-axis null of the 
radiation pattern seen in Fig. 3 – but largely, it remains well 
above the -64 dB noise level seen in Fig. 1. 

 

Figure 4.  Signals received at the sum and difference ports of 

the derivative probe of Fig. 2 using the spectrum of Fig. 1 with 

N = 1799 and a sampling step u = 8°.  
  

C. Probe Correction 

Inserting the signal Fourier series (1a) into (2a), 
interchanging the two summations, and evaluating the inner 
summation, the sum- and difference port signals can be 
expressed as 
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with the port spectral coefficients related to the signal spectral 
coefficients by 
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where the port spectral receiving coefficients are  
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Using eqs. (3a)-(3d), it is obviously possible to establish a 
system of linear equations from which the signal spectral 
coefficients Wn can be obtained from the probe sum- and 
difference-port signals wsum(u) and wdif(u) at half the number of 
standard sampling points – provided that the system is well 
conditioned.  

There exists, however, a more efficient and stable approach 
consisting of the following steps:  First, use the inverse of (3a) 
to determine the port spectral coefficients from the sum- and 
difference-port signals and; thus, in line with (1b), we have 

   
1

( )
2

H

m

Msum sum
jnudif dif

n m

m

u
W w u e



−

=


=   (4a) 

with 

( 1)   
2 /            

1              

m

H

H

u m u
u M

M N




= − + − 
 =

 +

 (4b) 

The tilda sign indicates that the obtained coefficient is different 
from the correct coefficient due to the use of only 
(approximately) half the number of standard sampling points, 
MH  ≥ N+1 as opposed to M  ≥ 2N+1. However, it can be shown 
that each obtained coefficient is the aliasing of two correct 
coefficients,  
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The sum and difference parts of (5) each constitutes two 
equations with two unknowns, which can readily be solved to 
determine the correct port spectral coefficients – and from 
these follows by (3b) the signal spectral coefficients. Hence, 
the second step can be expressed as 
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In summary, from the measured derivative probe sum- and 
difference-port signals wsum(u) and wdif(u) at (approximately) 
half the number of standard sampling points, MH  ≥ N+1, the 
use of first (4) and second (6) will determine the signal spectral 
coefficients Wn. This approach is employed below. 



D. Retrieved Signal 

In the ideal noise-free case with no higher-order spectral 
components above those due to the AUT, in which case the 
sampling criterion MH  ≥ N+1 would be satisfied, the probe 
correction outlined in Subsection II.C gives the exact signal 
coefficients Wn.  Hence, for derivative probe signals (3) based 

on the signal w44 in Fig. 1, with sampling step u = 8°, the 
probe correction, with (4) and (6), exactly recovers the signal 

coefficient Wn, n ≤ 44. 

In the practical noisy case with higher-order spectral 
components above those due to the AUT, the probe correction 
will of course be influenced.  We use now the probe signals in 
Fig. 4, based on reference spectrum for N=1799, with sampling 

step u = 8°, thus the number of samples MH = 45. Upon 
retrieval of the spectrum, up to the truncation number 44, the 
spatial signal is calculated for every 0.1°; Fig. 5 shows a 
comparison of this retrieved signal with the reference signal w44 
of Fig. 1.  It is seen that the retrieved signal agrees well with 
the reference signal, the RMS of the EES is only -66 dB. 
  

 

Figure 5.  Comparison of reference signal w44 with retrieved 

signal based on derivative probe measurement shown in Fig. 4 

as well the equivalent error signal quantifying their difference; 

RMS(EES) = -66 dB.  

 

Similar comparisons have been made for derivative probes 
with different number of elements, and Table I lists the 
obtained EES.  With increasing number of elements, the probe 
sum and difference signals will differ increasingly from the 
ideal point signal and signal derivative; yet the EES actually 
decreases.  This must be due to the fact that more elements also 
serve to reduce the effect of measurement noise through the 
averaging of this over the number of elements.  These results 
demonstrate that the derivative probe does not need to provide 
precisely the signal and the signal derivative in a single point – 
but just quantities related to these as long as the influence of 
the probe can be compensated for with probe correction.  

 

TABLE I.  EQUIVALENT ERROR SIGNAL BETWEEN REFERENCE 

AND RETRIEVED SIGNALS FOR DIFFERENT NUMBERS OF 

DERIVATIVE PROBE ELEMENTS 

No. of elements L RMS(EES) [dB] 

2 -48 

4 -56 

8 -62 

12 -63 

16 -64 

20 -65 

24 -66 

 

E. Summary 

The derivative probe does not measure exactly the 
field/signal and its spatial first-order derivative; but it measures 
quantities sufficiently close to these and thus provides two 
independent samples at each sampling point; hence the number 
of sample points can be reduced to half of the standard number.  
The experimental/numerical investigation in this Section II has 
demonstrated that upon probe correction, a measurement with a 
derivative probe can recover the reference signal to a very high 
accuracy even in the presence of realistic measurement noise.  

III. DERIVATIVE PROBE – SIMPLE DESIGNS  

This Section III discusses the design of derivative probes 
based on rectangular waveguide technology. 

A. Background - Monopulse Antennas 

A derivative probe should have one port providing a signal 
related to the incident field itself as well as a second port 
providing a signal related to a spatial derivative of the incident 
field. As demonstrated in Section II, see Fig. 3, the port for the 
field itself could have a sum radiation pattern while the port for 
the field derivative could have a difference pattern; indeed, the 
two ports can be referred to as the sum port and the difference 
port, respectively.  Hence, the design of derivative probes could 
well exploit the heritage of so-called mono-pulse antennas 
which are widely used for radar tracking, electronic support 
measure, and direction estimation in general [10]-[11]. 

 The mono-pulse technology developed from the 1940s in 
both the East [12] and the West [13] and of course first for 
military purposes; the proper processing of the sum- and 
difference-port signals facilitates a very accurate direction 
estimation. Later, its usage expanded to satellite tracking, not 
least with low Earth orbit constellations where passage times 
are short, to mobile satellite communication, and more recently 
also to automotive radars, drone technology, internet-of-things 
systems, mobile communication, and WLAN for tracking of 
individual devices and users. Numerous antenna types have 
been employed for mono-pulse systems in the different 
application areas – as overviewed in e.g. [14]-[16]. 

For antenna measurements, it would be a natural extension 
from standard probes to employ single-horn antennas for 
derivative probes – aiming at maintaining the reasonable 
bandwidth, the high radiation efficiency, the high polarisation 
purity, the low scattering cross section, and possibly pattern 



characteristics facilitating an efficient and stable solution of the 
near-field transmission formula.   

B. Derivative Probes using Rectangular Waveguide Modes 

Reference [7] discusses how the rectangular waveguide 
TE10, TE20, and HEM11 modes may be employed for the sum 
port and two difference ports - one for derivative in direction 
perpendicular to polarization, the other for derivative in 
direction parallel to polarization. The rectangular single-horn 
mono-pulse antennas reported by e.g. [17] -[20] were indeed 
based on these, and in some cases also higher-order, waveguide 
modes.  

Fig. 6 shows a conceptual arrangement of 4 coaxial probe 
feeds into the square waveguide and the combinations of the 
feed signals to excite the y-polarized TE10, TE20, and HEM11 
modes, as well as the corresponding electric fields over the 
cross section of the waveguide. 

 
Figure 6. Top: square waveguide cross section (0 ≤ x ≤ 1, 0 ≤ y 

≤ 1) with 4 coaxial probe feeds and combinations of the probe 

feed signals for the TE10, TE20, and HEM11 waveguide modes.  

Bottom:  electric field y-component. 

 

 

Figure 7. Radiated co-polar far-fields (polar plots with 0 ≤  ≤ 

90° in radial direction and  0 ≤  < 360° in azimuthal direction) 

for aperture size  a = 1.25. Top: Magnitude [dB].  Bottom: 
Phase [rad]. 

Fig. 7 shows the radiated far-fields of the open-ended 

waveguide based on both equivalent electric and magnetic 

currents and assuming aperture fields equal to the waveguide 

mode fields.  For TE10 waveguide mode, the far-field is of 

course the typical sum-pattern of a standard probe.  For the 

TE20 waveguide mode, the far-field is a difference pattern for 

the x-derivative of the y-component of the field; and for the 

HEM11 waveguide mode, the far-field is a difference pattern 

for the y-derivative of the y-component of the field.  

C. Spherical Wave Expansion and Solution of the Spherical 

Near-Field Transmission  Formula 

In the following, we employ the spherical wave expansion 

(7), where E is the electric field, r the position vector, k the 

wave number,  the intrinsic admittance of ambient medium, 
(3)
smnQ the so-called Q-coefficients, 

(3)
smnF  the out-going 

spherical vector wave functions (modes), and N is the 

truncation number [9]; 
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Standard probes are ideally so-called first-order probes with 
spectra containing only azimuthal modes of order m = ±1 since 
such probe facilitate the standard efficient and stable solution 
of the transmission formula [9]; this is often referred to as first-
order probe correction.  However, not all standard probes are 
first order and in such cases higher-order probe correction 
becomes necessary [21]. 

Based on the full-sphere (enabled by the use of both electric 
and magnetic equivalent currents) far-fields in Section III.B, 
the corresponding spherical wave expansions (SWEs) (7) have  
been calculated; see Fig. 8. As expected, the SWE for the 
radiated field of the TE10 waveguide mode is dominated by the 
m = ±1 spherical modes while the SWEs for the TE20 and 
HEM11 waveguide modes are dominated by the m = 0 and m =  
± 2 spherical modes.          

IV. CONCLUSIONS 

Based on experimental measurement data including 
measurement noise, it has been demonstrated in Section II that 
the use of a derivative probe of non-zero extent, having both a 
sum and a difference port/pattern, enables the sampling step to 
be increased to twice that of the standard sampling criterion. 
The derivative probe samples quantities closely related to the 
field and its spatial derivative, and the influence of the 
derivative probe receiving coefficients is compensated for with 
probe correction. 

 Simple derivative probe designs based on square 
waveguides with proper TE10, TE20, and HEM11 excitations 
have been presented in Section III along with their radiated far-
field and spherical wave expansions. While standard probes are 
dominated by m = ±1 spherical modes, the derivative probes 
are dominated by the m = 0 and m =  ± 2 spherical modes.          



 

 

 

Fig. 8.  Spherical wave expansion Q-coefficients for the far-
fields in Fig. 7 of the TE10, TE20, and HEM11 rectangular 
waveguide modes in Fig. 6.  
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